Neira José L
IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
Subcell Biochem. 2024;105:171-206. doi: 10.1007/978-3-031-65187-8_5.
Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle. In this sense, NMR is also the only technique currently available to describe, in atomic detail, the conformational preferences of intrinsically disordered viral proteins. Furthermore, NMR can provide insights into the thermodynamic parameters governing binding reactions between different viral macromolecules. NMR has also complemented X-ray crystallography and has been combined with electron microscopy to obtain pseudo-atomic models of entire virus capsids. Finally, the joint use of liquid and solid-state NMR has allowed the identification of conformational changes in viral capsids upon insertion into host membranes.
核磁共振(NMR)是一种光谱技术,基于原子核在外部磁场存在下对射频辐射的吸收。核磁共振采用“自下而上”的方法来解析病毒蛋白的孤立结构域(包括衣壳蛋白亚基)的结构,或提供有关此类蛋白相互作用的其他大分子伙伴的信息。核磁共振在描述病毒蛋白和核酸的构象变化方面发挥了重要作用,揭示了动态平衡的存在,这些平衡被认为在病毒生命周期的不同阶段至关重要。从这个意义上说,核磁共振也是目前唯一能够在原子水平详细描述内在无序病毒蛋白构象偏好的技术。此外,核磁共振可以深入了解控制不同病毒大分子之间结合反应的热力学参数。核磁共振还补充了X射线晶体学,并与电子显微镜相结合,以获得整个病毒衣壳的准原子模型。最后,液态和固态核磁共振的联合使用使得能够识别病毒衣壳插入宿主膜时的构象变化。