Suppr超能文献

用于机器学习的实验经济学——关于测谎的方法学贡献

Experimental economics for machine learning-a methodological contribution on lie detection.

作者信息

Bershadskyy Dmitri, Dinges Laslo, Fiedler Marc-André, Al-Hamadi Ayoub, Ostermaier Nina, Weimann Joachim

机构信息

Faculty of Economics and Management, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.

Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.

出版信息

PLoS One. 2024 Dec 31;19(12):e0314806. doi: 10.1371/journal.pone.0314806. eCollection 2024.

Abstract

In this paper, we investigate how technology has contributed to experimental economics in the past and illustrate how experimental economics can contribute to technological progress in the future. We argue that with machine learning (ML), a new technology is at hand, where for the first time experimental economics can contribute to enabling substantial improvement of technology. At the same time, ML opens up new questions for experimental research because it can generate previously impossible observations. To demonstrate this, we focus on algorithms trained to detect lies. Such algorithms are of high relevance for research in economics as they deal with the ability to retrieve otherwise private information. We deduce that most of the commonly applied data sets for the training of lie detection algorithms could be improved by applying the toolbox of experimental economics. To illustrate this, we replicate the "lies in disguise-experiment" by Fischbacher and Föllmi-Heusi with a modification regarding monitoring. The modified setup guarantees a certain level of privacy from the experimenter yet allows to record the subjects as they lie to the camera. Despite monitoring, our results indicate the same lying behavior as in the original experiment. Yet, our experiment allows an individual-level analysis of experimental data and the generation of a lie detection algorithm with an accuracy rate of 67%, which we present in this article.

摘要

在本文中,我们探究了过去技术如何推动了实验经济学的发展,并阐述了实验经济学在未来如何促进技术进步。我们认为,机器学习(ML)这一新技术已经出现,实验经济学首次能够为技术的大幅改进做出贡献。同时,机器学习为实验研究带来了新问题,因为它能够产生以前无法获得的观察结果。为了证明这一点,我们聚焦于用于检测谎言的训练算法。此类算法与经济学研究高度相关,因为它们涉及获取原本属于私人信息的能力。我们推断,通过应用实验经济学的工具箱,可以改进大多数常用于训练谎言检测算法的数据集。为了说明这一点,我们对菲施巴赫和福尔米 - 赫usi的“伪装的谎言实验”进行了复制,并在监控方面做了修改。修改后的设置保证了实验者一定程度的隐私,但仍能在受试者对摄像头说谎时进行记录。尽管有监控,我们的结果显示出与原始实验相同的说谎行为。然而,我们的实验允许对实验数据进行个体层面的分析,并生成了准确率为67%的谎言检测算法,我们将在本文中展示该算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验