Suppr超能文献

深度学习利用常规染色的全切片图像预测管腔A型乳腺癌的亚型异质性和预后。

Deep Learning Predicts Subtype Heterogeneity and Outcomes in Luminal A Breast Cancer Using Routinely Stained Whole-Slide Images.

作者信息

Kurian Nikhil Cherian, Gann Peter H, Kumar Neeraj, McGregor Stephanie M, Verma Ruchika, Sethi Amit

机构信息

Department of Electrical Engineering, Indian Institute of Technology-Bombay, Mumbai, India.

Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia.

出版信息

Cancer Res Commun. 2025 Jan 1;5(1):157-166. doi: 10.1158/2767-9764.CRC-24-0397.

Abstract

A deep learning model, trained using transcriptomic data, inexpensively quantifies and fine-maps ITH due to subtype admixture in routine images of LumA breast cancer, the most favorable subtype. This new approach could facilitate exploration of the mechanisms behind such heterogeneity and its impact on selection of therapy for individual patients.

摘要

一种利用转录组数据训练的深度学习模型,能够在最有利的亚型——LumA乳腺癌的常规图像中,因亚型混合而对肿瘤内异质性进行低成本量化和精细定位。这种新方法有助于探索这种异质性背后的机制及其对个体患者治疗选择的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c92/11770635/395b63a4276d/crc-24-0397_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验