Kurian Nikhil Cherian, Gann Peter H, Kumar Neeraj, McGregor Stephanie M, Verma Ruchika, Sethi Amit
Department of Electrical Engineering, Indian Institute of Technology-Bombay, Mumbai, India.
Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia.
Cancer Res Commun. 2025 Jan 1;5(1):157-166. doi: 10.1158/2767-9764.CRC-24-0397.
A deep learning model, trained using transcriptomic data, inexpensively quantifies and fine-maps ITH due to subtype admixture in routine images of LumA breast cancer, the most favorable subtype. This new approach could facilitate exploration of the mechanisms behind such heterogeneity and its impact on selection of therapy for individual patients.
一种利用转录组数据训练的深度学习模型,能够在最有利的亚型——LumA乳腺癌的常规图像中,因亚型混合而对肿瘤内异质性进行低成本量化和精细定位。这种新方法有助于探索这种异质性背后的机制及其对个体患者治疗选择的影响。