Lu Chenbao, He Qichuan, Huang Senhe, Shi Pengfei, Yang Chongqing, Zhang Jichao, Zhu Jinhui, Zhang Juan, Wang Tianfu, Zhuang Xiaodong
The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Frontiers Science Center for Transformative Molecules, Zhang Jiang, Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China.
Adv Mater. 2025 Feb;37(7):e2415092. doi: 10.1002/adma.202415092. Epub 2024 Dec 30.
The electrochemical conversion of carbon dioxide (CO) into hydrocarbon products emerges as a pivotal sustainable strategy for carbon utilization. Cu-based catalysts are currently prioritized as the most effective means for this process, yet it remains a long-term goal to achieve high product selectivity at elevated current densities. This study delved into exploring the influence of a topological poly(2-aminoazulene) with a substantial dipole moment on modulating the Cu surface dipole field to augment the catalytic activity involved in CO reduction. The resulting Cu/poly(2-aminoazulene) heterojunction showcases a remarkable ethylene Faradaic efficiency of 68.9% even at a substantial current density of 1 A cm. Through in situ Raman and in situ Fourier-transform infrared spectroscopy, poly(2-aminoazulene)-modified Cu electrode exhibits a heightened concentration of intermediates as compared to the bare Cu, proving advantageous for C-C dimerization. Theoretical calculations demonstrate the reduced energy barrier for C-C dimerization, and meanwhile impeding hydrogen evolution reaction on Cu/poly(2-aminoazulene) heterojunction, which are beneficial to CO reduction. The catalyst design in this study, incorporating dipole moment considerations, not only investigates the influence of dipole moment on electrochemical carbon dioxide reduction but also pioneers an innovative strategy to augment catalytic activity by elevating the micro-concentration of reactants on catalyst surfaces.
将二氧化碳(CO₂)电化学转化为碳氢化合物产品是一种关键的碳利用可持续策略。目前,铜基催化剂被视为该过程最有效的手段,但在高电流密度下实现高产品选择性仍是一个长期目标。本研究深入探讨了具有显著偶极矩的拓扑聚(2-氨基薁)对调节铜表面偶极场以增强二氧化碳还原催化活性的影响。所得的铜/聚(2-氨基薁)异质结即使在1 A cm²的高电流密度下也展现出68.9%的显著乙烯法拉第效率。通过原位拉曼光谱和原位傅里叶变换红外光谱,与裸铜相比,聚(2-氨基薁)修饰的铜电极显示出更高的中间体浓度,这对碳-碳二聚化有利。理论计算表明碳-碳二聚化的能垒降低,同时阻碍了铜/聚(2-氨基薁)异质结上的析氢反应,这有利于二氧化碳还原。本研究中的催化剂设计考虑了偶极矩,不仅研究了偶极矩对电化学二氧化碳还原的影响,还开创了一种通过提高催化剂表面反应物微浓度来增强催化活性的创新策略。