Suppr超能文献

通过工程方法调控钴酞菁中催化剂与载体的相互作用以增强电催化CO还原:石墨烯包覆的AlO的作用

Engineering catalyst-support interactions in cobalt phthalocyanine for enhanced electrocatalytic CO reduction: the role of graphene-skinned AlO.

作者信息

Bai Qianqian, Ma Bingyun, Wei Le, Ma Mutian, Zheng Zhangyi, Hua Wei, Jiao Zhenyang, Wang Min, Yuan Huihong, Wei Zhihe, Cheng Tao, Ke Xiaoxing, Zhong Jun, Lyu Fenglei, Deng Zhao, Peng Yang

机构信息

Soochow Institute of Energy and Material Innovations, College of Energy, Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University Suzhou 215006 China

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou 215123 China.

出版信息

Chem Sci. 2025 May 22;16(25):11587-11597. doi: 10.1039/d5sc02616d. eCollection 2025 Jun 25.

Abstract

Electrocatalytic CO reduction (eCOR) driven by renewable electricity holds great promise to mitigate anthropogenic CO emissions. In this study, we engineer cobalt phthalocyanine (CoPc) supported on graphene-skinned AlO nanosheets (CoPc/AlO@C) to enhance CO-to-CO conversion. The strong π-π stacking between the CoPc macrocycle and interlayer graphene, coupled with electronic repulsion between the Co center and AlO, induces a structural distortion in CoPc, raising the energy level of the d orbital. This structural perturbation facilitates CO activation, shifts the rate-determining step, and thereby substantially accelerates the overall eCOR kinetics. The optimal catalyst demonstrates a near-unity CO faradaic efficiency (FE) across a wide current range, achieving a high CO partial current density of 388 mA cm with an exceptional turnover frequency (TOF) of 43 s, in addition to prolonged operational stability in a membrane electrode assembly (MEA). This work, by leveraging the vectorial interactions between molecular moieties and the substrate to reshape the macrocyclic structure and realign the orbital energies of CoPc, offers new insights into the design of efficient electrocatalysts for eCOR.

摘要

由可再生电力驱动的电催化CO还原(eCOR)在减轻人为CO排放方面具有巨大潜力。在本研究中,我们设计了负载在石墨烯包覆的AlO纳米片上的钴酞菁(CoPc/AlO@C)以增强CO到CO的转化。CoPc大环与层间石墨烯之间强烈的π-π堆积,再加上Co中心与AlO之间的电子排斥,导致CoPc结构畸变,提高了d轨道的能级。这种结构扰动促进了CO活化,改变了速率决定步骤,并因此大幅加速了整体eCOR动力学。最佳催化剂在宽电流范围内表现出接近单位的CO法拉第效率(FE),实现了388 mA cm的高CO分电流密度以及43 s的出色周转频率(TOF),此外在膜电极组件(MEA)中具有延长的操作稳定性。这项工作通过利用分子部分与底物之间的矢量相互作用来重塑大环结构并重新排列CoPc的轨道能量,为设计用于eCOR的高效电催化剂提供了新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0e6/12189209/e65dcea5bf2b/d5sc02616d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验