Wang Chao, Sun Yifan, Chen Yuzhuo, Zhang Yiting, Yue Liangliang, Han Lianhuan, Zhao Liubin, Zhu Xunjin, Zhan Dongping
Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
Adv Sci (Weinh). 2024 Sep;11(34):e2404053. doi: 10.1002/advs.202404053. Epub 2024 Jul 8.
Electrochemical CO reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu-based bimetallic catalysts play a crucial role in enhancing CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C product generation. To enhance Cu's electronic structure and direct its selectivity toward C products, a novel strategy is proposed involving the in situ electropolymerization of a nano-thickness cobalt porphyrin polymeric network (EP-CoP) onto a copper electrode, resulting in the creation of a highly effective EP-CoP/Cu tandem catalyst. The even distribution of EP-CoP facilitates the initial reduction of CO to CO intermediates, which then transition to Cu sites for efficient C─C coupling. DFT calculations confirm that the CO enrichment from Co sites boosts CO coverage on Cu sites, promoting C─C coupling for C product formation. The EP-CoP/Cu gas diffusion electrode achieves an impressive current density of 726 mA cm at -0.9 V versus reversible hydrogen electrode (RHE), with a 76.8% Faraday efficiency for total C conversion and 43% for ethylene, demonstrating exceptional long-term stability in flow cells. These findings mark a significant step forward in developing a tandem catalyst system for the effective electrochemical production of ethylene.
电化学CO还原在将可持续能源转化为有价值的燃料和化学品方面引起了广泛关注。铜基双金属催化剂在提高铜位点上的CO浓度以实现高效的C-C偶联反应中起着关键作用,特别是在生成C产物方面。为了增强铜的电子结构并引导其对C产物的选择性,提出了一种新策略,即将纳米厚度的钴卟啉聚合物网络(EP-CoP)原位电聚合到铜电极上,从而制备出一种高效的EP-CoP/Cu串联催化剂。EP-CoP的均匀分布促进了CO最初还原为CO中间体,然后这些中间体转移到铜位点进行高效的C-C偶联。密度泛函理论计算证实,来自钴位点的CO富集提高了铜位点上的CO覆盖度,促进了用于C产物形成的C-C偶联。EP-CoP/Cu气体扩散电极在相对于可逆氢电极(RHE)为-0.9 V时实现了令人印象深刻的726 mA cm的电流密度,总C转化的法拉第效率为76.8%,乙烯的法拉第效率为43%,在流动池中表现出出色的长期稳定性。这些发现标志着在开发用于有效电化学生产乙烯的串联催化剂系统方面迈出了重要一步。
J Colloid Interface Sci. 2023-9
ACS Appl Mater Interfaces. 2023-4-5
Nat Nanotechnol. 2024-3
Chem Soc Rev. 2021-11-29
Angew Chem Int Ed Engl. 2021-11-22
Angew Chem Int Ed Engl. 2021-9-13