Song Seongeun, Ko Panseon, Keum Seula, Jeong Jangho, Hwang Ye Eun, Lee Minwoo, Choi Jee-Hye, Jung Youn-Sang, Kim Sung Hyun, Rhee Sangmyung
Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
Cell Mol Life Sci. 2024 Dec 31;82(1):32. doi: 10.1007/s00018-024-05565-w.
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance. Notably, treating non-resistant breast cancer cells with eribulin led to increased microtubule acetylation around the nucleus and cell death. Conversely, eribulin-resistant (EriR) cells did not exhibit a similar increase in acetylation, even at half-maximal inhibitory concentrations. Interestingly, silencing the ATAT1 gene, which encodes the α-tubulin N-acetyltransferase 1 (the enzyme responsible for microtubule acetylation), induces eribulin resistance, mirroring the phenotype of EriR cells. Moreover, eribulin-induced acetylation of microtubules facilitates the transport of Ca from the ER to the mitochondria, releasing cytochrome c and subsequent cell death. Transcriptome analysis of EriR cells revealed a significant downregulation of ER stress-induced apoptotic signals, particularly the activity of protein kinase RNA-like ER kinase (PERK), within the unfolded protein response signaling system. Pharmacological induction of microtubule acetylation through a histone deacetylase 6 inhibitor combined with the activation of PERK signaling using the PERK activator CCT020312 in EriR cells enhanced mitochondrial Ca accumulation and subsequent cell death. These findings reveal a novel mechanism by which eribulin-induced microtubule acetylation and increased PERK activity lead to Ca overload from the ER to the mitochondria, ultimately triggering cell death. This study offers new insights into strategies for overcoming resistance to microtubule-targeting agents.
在过去几十年中,微管已成为各种抗癌药物的作用靶点,包括紫杉醇和艾日布林。尽管它们具有良好的效果,但耐药性的产生仍然是一个挑战。我们旨在确定一种利用艾日布林靶向微管的新型细胞死亡机制,并评估其克服艾日布林耐药性的潜力。值得注意的是,用艾日布林处理非耐药乳腺癌细胞会导致细胞核周围微管乙酰化增加以及细胞死亡。相反,即使在半数最大抑制浓度下,艾日布林耐药(EriR)细胞也没有表现出类似的乙酰化增加。有趣的是,沉默编码α-微管蛋白N-乙酰转移酶1(负责微管乙酰化的酶)的ATAT1基因会诱导艾日布林耐药,这与EriR细胞的表型相似。此外,艾日布林诱导的微管乙酰化促进了Ca从内质网向线粒体的转运,释放细胞色素c并随后导致细胞死亡。对EriR细胞的转录组分析显示,在内质网应激诱导的凋亡信号中,特别是未折叠蛋白反应信号系统中蛋白激酶RNA样内质网激酶(PERK)的活性显著下调。通过组蛋白去乙酰化酶6抑制剂进行微管乙酰化的药理学诱导,并在EriR细胞中使用PERK激活剂CCT020312激活PERK信号,可增强线粒体Ca积累并随后导致细胞死亡。这些发现揭示了一种新机制,即艾日布林诱导的微管乙酰化和PERK活性增加导致Ca从内质网向线粒体过载,最终触发细胞死亡。这项研究为克服微管靶向药物耐药性的策略提供了新的见解。