Salaroglio Iris C, Panada Elisa, Moiso Enrico, Buondonno Ilaria, Provero Paolo, Rubinstein Menachem, Kopecka Joanna, Riganti Chiara
Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
System Biology Ireland, University College Dublin, Dublin 4, Ireland.
Mol Cancer. 2017 May 12;16(1):91. doi: 10.1186/s12943-017-0657-0.
Nutrient deprivation, hypoxia, radiotherapy and chemotherapy induce endoplasmic reticulum (ER) stress, which activates the so-called unfolded protein response (UPR). Extensive and acute ER stress directs the UPR towards activation of death-triggering pathways. Cancer cells are selected to resist mild and prolonged ER stress by activating pro-survival UPR. We recently found that drug-resistant tumor cells are simultaneously resistant to ER stress-triggered cell death. It is not known if cancer cells adapted to ER stressing conditions acquire a chemoresistant phenotype.
To investigate this issue, we generated human cancer cells clones with acquired resistance to ER stress from ER stress-sensitive and chemosensitive cells.
ER stress-resistant cells were cross-resistant to multiple chemotherapeutic drugs: such multidrug resistance (MDR) was due to the overexpression of the plasma-membrane transporter MDR related protein 1 (MRP1). Gene profiling analysis unveiled that cells with acquired resistance to ER stress and chemotherapy share higher expression of the UPR sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK), which mediated the erythroid-derived 2-like 2 (Nrf2)-driven transcription of MRP1. Disrupting PERK/Nrf2 axis reversed at the same time resistance to ER stress and chemotherapy. The inducible silencing of PERK reduced tumor growth and restored chemosensitivity in resistant tumor xenografts.
Our work demonstrates for the first time that the adaptation to ER stress in cancer cells produces a MDR phenotype. The PERK/Nrf2/MRP1 axis is responsible for the resistance to ER stress and chemotherapy, and may represent a good therapeutic target in aggressive and resistant tumors.
营养剥夺、缺氧、放疗和化疗会诱导内质网(ER)应激,从而激活所谓的未折叠蛋白反应(UPR)。广泛而急性的ER应激会使UPR转向激活死亡触发途径。癌细胞通过激活促生存的UPR来抵抗轻度和持续的ER应激。我们最近发现,耐药肿瘤细胞同时对ER应激触发的细胞死亡具有抗性。目前尚不清楚适应ER应激条件的癌细胞是否会获得化疗耐药表型。
为了研究这个问题,我们从ER应激敏感和化疗敏感的细胞中产生了对ER应激具有获得性抗性的人类癌细胞克隆。
ER应激抗性细胞对多种化疗药物具有交叉抗性:这种多药耐药性(MDR)是由于质膜转运体多药耐药相关蛋白1(MRP1)的过表达所致。基因谱分析显示,对ER应激和化疗具有获得性抗性的细胞中,UPR传感器蛋白激酶RNA样内质网激酶(PERK)的表达较高,PERK介导了由红细胞衍生的2样2(Nrf2)驱动的MRP1转录。破坏PERK/Nrf2轴可同时逆转对ER应激和化疗的抗性。PERK的诱导性沉默可减少耐药肿瘤异种移植中的肿瘤生长并恢复化疗敏感性。
我们的工作首次证明,癌细胞对ER应激的适应会产生MDR表型。PERK/Nrf2/MRP1轴负责对ER应激和化疗的抗性,可能是侵袭性和耐药性肿瘤的良好治疗靶点。