Suppr超能文献

基于人工智能的增材制造拉伸强度部件能耗预测

Energy Consumption Prediction of Additive Manufactured Tensile Strength Parts Using Artificial Intelligence.

作者信息

Ulkir Osman, Bayraklılar Mehmet Said, Kuncan Melih

机构信息

Department of Electric and Energy, Mus Alparslan University, Mus, Turkey.

Department of Civil Engineering, Siirt University, Siirt, Turkey.

出版信息

3D Print Addit Manuf. 2024 Oct 22;11(5):e1909-e1920. doi: 10.1089/3dp.2023.0189. eCollection 2024 Oct.

Abstract

The manufacturing sector's interest in additive manufacturing (AM) methods is increasing daily. The increase in energy consumption requires optimization of energy consumption in rapid prototyping technology. This study aims to minimize energy consumption with determined production parameters. Four machine learning algorithms are preferred to model the energy consumption of the fused deposition modeling-based 3D printer. The real-time measured test sample data were trained, and the prediction model between the parameters of 3D fabrication and the energy consumption was created. The predicted model was evaluated using five performance criteria. These are mean square error (MSE), mean absolute error (MAE), root mean squared error (RMSE), -squared ( ), and explained variance score (EVS). It has been seen that the Gaussian Process Regression model predicts energy consumption in the AM with high accuracy:  = 0.99, EVS = 0.99, MAE = 0.016, RMSE = 0.022, and MSE = 0.00049.

摘要

制造业对增材制造(AM)方法的兴趣与日俱增。能源消耗的增加要求对快速成型技术中的能源消耗进行优化。本研究旨在通过确定的生产参数将能源消耗降至最低。首选四种机器学习算法对基于熔融沉积建模的3D打印机的能源消耗进行建模。对实时测量的测试样本数据进行训练,建立了3D制造参数与能源消耗之间的预测模型。使用五个性能标准对预测模型进行评估。这些标准是均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)、决定系数(R²)和解释方差得分(EVS)。结果发现,高斯过程回归模型能够高精度地预测增材制造中的能源消耗:R² = 0.99,EVS = 0.99,MAE = 0.016,RMSE = 0.022,MSE = 0.00049。

相似文献

本文引用的文献

4
The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic.增材制造和抗菌聚合物在新冠疫情中的作用。
Expert Rev Med Devices. 2020 Jun;17(6):477-481. doi: 10.1080/17434440.2020.1756771. Epub 2020 Apr 30.
5
Additive Manufacturing for Self-Healing Soft Robots.用于自修复软机器人的增材制造
Soft Robot. 2020 Dec;7(6):711-723. doi: 10.1089/soro.2019.0081. Epub 2020 Mar 10.
6
[An overview of multiple linear regression model and its application].[多元线性回归模型概述及其应用]
Zhonghua Yu Fang Yi Xue Za Zhi. 2019 Jun 6;53(6):653-656. doi: 10.3760/cma.j.issn.0253-9624.2019.06.021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验