Suppr超能文献

新辅助放化疗后局部晚期直肠癌的计算机断层扫描与基于临床的完全缓解预测:一种机器学习方法

Computed Tomography Scan and Clinical-based Complete Response Prediction in Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Machine Learning Approach.

作者信息

Anijdan Seyyed Hossein Mousavie, Moslemi Daryush, Reiazi Reza, Tafti Hamid Fallah, Moghadamnia Ali Akbar, Paydar Reza

机构信息

Department of Radiation Technology, Faculty of Allied Medicine, Babol University of Medical Sciences, Babol, Iran.

Department of Radiation Oncology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.

出版信息

J Med Signals Sens. 2024 Dec 3;14:32. doi: 10.4103/jmss.jmss_46_23. eCollection 2024.

Abstract

BACKGROUND

Treatment of locally advanced rectal cancer (LARC) involves neoadjuvant chemoradiotherapy (nCRT), followed by total mesorectal excision. Examining the response to treatment is one of the most important factors in the follow-up of patients; therefore, in this study, radiomics patterns derived from pretreatment computed tomography images in rectal cancer and its relationship with treatment response measurement criteria have been investigated.

METHODS

Fifty patients with rectal adenocarcinoma who were candidates for nCRT and surgery were included. The information obtained from the tumor surgical pathology report, including pathological T and N, the degree of tumor differentiation, lymphovascular invasion, and perineural invasion along with radiomics characteristics to each patient, was assessed. Modeling with disturbed forest model was used for radiomics data. For other variables, Shapiro-Wilk, Chi-Square, and Pearson Chi-square tests were used.

RESULTS

The participants of this study were 50 patients (23 males [46%] and 27 females [54%]). There was no significant difference in the rate of response to neoadjuvant treatment in between age and gender groups. According to the modeling based on combined clinical and radiomics data together, area under the curves for the nonresponders and complete respond group (responder group) was 0.97 and 0.99, respectively.

CONCLUSION

Random forests modeling based on combined radiomics and clinical characteristics of the pretreatment tumor images has the ability to predict the response or non-response to neoadjuvant treatment in LARC to an acceptable extent.

摘要

背景

局部晚期直肠癌(LARC)的治疗包括新辅助放化疗(nCRT),随后进行全直肠系膜切除术。检查治疗反应是患者随访中最重要的因素之一;因此,在本研究中,研究了直肠癌治疗前计算机断层扫描图像衍生的放射组学模式及其与治疗反应测量标准的关系。

方法

纳入50例拟行nCRT和手术的直肠腺癌患者。评估从肿瘤手术病理报告中获得的信息,包括病理T和N、肿瘤分化程度、淋巴管侵犯和神经周围侵犯以及每位患者的放射组学特征。使用随机森林模型对放射组学数据进行建模。对于其他变量,使用Shapiro-Wilk检验、卡方检验和Pearson卡方检验。

结果

本研究的参与者为50例患者(23例男性[46%]和27例女性[54%])。年龄和性别组之间新辅助治疗的反应率没有显著差异。根据基于临床和放射组学数据相结合的建模,无反应者和完全反应组(反应者组)的曲线下面积分别为0.97和0.99。

结论

基于治疗前肿瘤图像的放射组学和临床特征相结合的随机森林建模能够在可接受的程度上预测LARC患者对新辅助治疗的反应或无反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe6/11687674/664560b20925/JMSS-14-32-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验