Suppr超能文献

利用基于 MRI 的放射组学和深度学习数据融合模型预测局部晚期直肠癌患者新辅助放化疗后的病理完全缓解。

Predicting pathological complete response following neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer using merged model integrating MRI-based radiomics and deep learning data.

机构信息

Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.

Department of Radiology, RuiJin Hospital LuWan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.

出版信息

BMC Med Imaging. 2024 Oct 24;24(1):289. doi: 10.1186/s12880-024-01474-3.

Abstract

BACKGROUND

To construct and compare merged models integrating clinical factors, MRI-based radiomics features and deep learning (DL) models for predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC).

METHODS

Totally 197 patients with LARC administered surgical resection after nCRT were assigned to cohort 1 (training and test sets); meanwhile, 52 cases were assigned to cohort 2 as a validation set. Radscore and DL models were established for predicting pCR applying pre- and post-nCRT MRI data, respectively. Different merged models integrating clinical factors, Radscore and DL model were constituted. Their predictive performances were validated and compared by receiver operating characteristic (ROC) and decision curve analyses (DCA).

RESULTS

Merged models were established integrating selected clinical factors, Radscore and DL model for pCR prediction. The areas under the ROC curves (AUCs) of the pre-nCRT merged model were 0.834 (95% CI: 0.737-0.931) and 0.742 (95% CI: 0.650-0.834) in test and validation sets, respectively. The AUCs of the post-nCRT merged model were 0.746 (95% CI: 0.636-0.856) and 0.737 (95% CI: 0.646-0.828) in test and validation sets, respectively. DCA showed that the pretreatment algorithm could yield enhanced clinically benefit than the post-nCRT approach.

CONCLUSIONS

The pre-nCRT merged model including clinical factors, Radscore and DL model constitutes an effective non-invasive tool for pCR prediction in LARC.

摘要

背景

为了构建和比较整合临床因素、基于 MRI 的放射组学特征和深度学习(DL)模型的合并模型,以预测局部晚期直肠癌(LARC)患者新辅助放化疗(nCRT)后病理完全缓解(pCR)。

方法

总共 197 例接受 nCRT 后手术切除的 LARC 患者被分配到队列 1(训练和测试集);同时,52 例被分配到队列 2 作为验证集。应用 nCRT 前后的 MRI 数据分别建立 Radscore 和 DL 模型以预测 pCR。构建了整合临床因素、Radscore 和 DL 模型的不同合并模型,并通过接受者操作特征(ROC)和决策曲线分析(DCA)对其预测性能进行验证和比较。

结果

建立了整合选定临床因素、Radscore 和 DL 模型的合并模型以预测 pCR。在测试和验证集中,nCRT 前合并模型的 ROC 曲线下面积(AUC)分别为 0.834(95%CI:0.737-0.931)和 0.742(95%CI:0.650-0.834)。nCRT 后合并模型的 AUC 分别为 0.746(95%CI:0.636-0.856)和 0.737(95%CI:0.646-0.828)。DCA 表明,预处理算法可获得比 nCRT 后方法更高的临床获益。

结论

包括临床因素、Radscore 和 DL 模型的 nCRT 前合并模型是预测 LARC 患者 pCR 的有效非侵入性工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/560a/11515279/beb3487e42fb/12880_2024_1474_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验