Suppr超能文献

靶向卵巢癌中的促卵泡激素/促卵泡激素受体轴:利用纳米技术和免疫疗法的先进治疗方法

Targeting the FSH/FSHR axis in ovarian cancer: advanced treatment using nanotechnology and immunotherapy.

作者信息

Feng Fuqing, Liu Tianhang, Hou Xiaoman, Lin Xueyan, Zhou Susu, Tian Yongjie, Qi Xiaoyi

机构信息

Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.

出版信息

Front Endocrinol (Lausanne). 2024 Dec 17;15:1489767. doi: 10.3389/fendo.2024.1489767. eCollection 2024.

Abstract

Ovarian cancer (OC) is the gynecological malignancy with the poorest prognosis. Surgery and chemotherapy are the primary therapies for OC; however, patients often experience recurrence. Given the intimate interaction between OC cells and the tumor microenvironment (TME), it is imperative to devise treatments that target both tumor cells and TME components. Recently, follicle-stimulating hormone (FSH) levels in the blood have been shown to correlate with poorer prognosis in individuals with OC. Ovarian carcinoma cells express FSH receptors (FSHRs). Thus, FSH is an important target in the development of novel therapeutic agents. Here, we review the effects of FSH on normal physiology, including the reproductive, skeletal, cardiac, and fat metabolic systems. Importantly, this review outlines the role and mechanism of the FSH/FSHR axis in the proliferation, survival, and metastasis of OC, providing theoretical support for the targeted FSHR treatment of OC. Current progress in targeting FSHR for OC, including the recent application of nanotechnology and immunotherapy, is presented. Finally, we discuss prospects and future directions of targeted FSHR therapy in OC.

摘要

卵巢癌(OC)是预后最差的妇科恶性肿瘤。手术和化疗是OC的主要治疗方法;然而,患者经常会复发。鉴于OC细胞与肿瘤微环境(TME)之间存在密切的相互作用,设计同时针对肿瘤细胞和TME成分的治疗方法势在必行。最近,血液中的促卵泡激素(FSH)水平已被证明与OC患者较差的预后相关。卵巢癌细胞表达FSH受体(FSHRs)。因此,FSH是新型治疗药物开发的一个重要靶点。在这里,我们综述了FSH对正常生理功能的影响,包括生殖、骨骼、心脏和脂肪代谢系统。重要的是,本综述概述了FSH/FSHR轴在OC增殖、存活和转移中的作用及机制,为OC的FSHR靶向治疗提供理论支持。介绍了针对OC的FSHR靶向治疗的当前进展,包括纳米技术和免疫疗法的最新应用。最后,我们讨论了OC中FSHR靶向治疗的前景和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f7/11685086/2ca4ae003f00/fendo-15-1489767-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验