Suppr超能文献

纵向数据的混合截断样条局部线性非参数回归模型的性能

The performance of mixed truncated spline-local linear nonparametric regression model for longitudinal data.

作者信息

Sriliana Idhia, Budiantara I Nyoman, Ratnasari Vita

机构信息

Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia.

Department of Statistics, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu 38371, Indonesia.

出版信息

MethodsX. 2024 Mar 21;12:102652. doi: 10.1016/j.mex.2024.102652. eCollection 2024 Jun.

Abstract

A mixed estimator nonparametric regression (MENR) model is an additive model that involves a combination of two estimators or more in multivariable nonparametric regression. The model is used when there are differences in data patterns among predictor variables. This study proposes the development of the MENR model on longitudinal data namely a mixed truncated spline-local linear nonparametric regression (MTSLLNR) model. A modified weighted least square (WLS) method through two-stage estimation is used to estimate the regression function in the proposed model. To illustrate the performance of the MTSLLNR model, a simulation study with a sample size variation of subjects and time points is provided. Additionally, the MTSLLNR model is also applied to model the poverty gap index data. Both simulated and real data results suggest that the proposed model has consistency findings and good performance in longitudinal data modeling. Some highlights of the proposed method are:•The method combines two estimators of local linear and truncated spline to accommodate the differences in data patterns in the nonparametric regression for longitudinal data.•Selection of optimal knots and bandwidth using the generalized cross-validation (GCV) method.•The consistency findings and general performance of the method is shown by simulation and real data application.

摘要

混合估计非参数回归(MENR)模型是一种加性模型,它在多变量非参数回归中涉及两个或更多估计器的组合。当预测变量之间的数据模式存在差异时使用该模型。本研究提出了基于纵向数据的MENR模型,即混合截断样条-局部线性非参数回归(MTSLLNR)模型。通过两阶段估计的修正加权最小二乘(WLS)方法用于估计所提出模型中的回归函数。为了说明MTSLLNR模型的性能,提供了一项关于受试者样本量和时间点变化的模拟研究。此外,MTSLLNR模型还应用于贫困差距指数数据建模。模拟和实际数据结果均表明,所提出的模型在纵向数据建模中具有一致的结果和良好的性能。所提出方法的一些亮点包括:

  • 该方法结合了局部线性和截断样条的两个估计器,以适应纵向数据非参数回归中数据模式的差异。

  • 使用广义交叉验证(GCV)方法选择最优节点和带宽。

  • 通过模拟和实际数据应用展示了该方法的一致性结果和总体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01fc/11636856/0adc80a35357/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验