Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
Nat Mater. 2021 Dec;20(12):1670-1676. doi: 10.1038/s41563-021-01093-1. Epub 2021 Sep 30.
The magnetoelastic effect-the variation of the magnetic properties of a material under mechanical stress-is usually observed in rigid alloys, whose mechanical modulus is significantly different from that of human tissues, thus limiting their use in bioelectronics applications. Here, we observed a giant magnetoelastic effect in a soft system based on micromagnets dispersed in a silicone matrix, reaching a magnetomechanical coupling factor indicating up to four times more enhancement than in rigid counterparts. The results are interpreted using a wavy chain model, showing how mechanical stress changes the micromagnets' spacing and dipole alignment, thus altering the magnetic field generated by the composite. Combined with liquid-metal coils patterned on polydimethylsiloxane working as a magnetic induction layer, the soft magnetoelastic composite is used for stretchable and water-resistant magnetoelastic generators adhering conformably to human skin. Such devices can be used as wearable or implantable power generators and biomedical sensors, opening alternative avenues for human-body-centred applications.
磁弹效应——材料在机械应力下磁性能的变化——通常在刚性合金中观察到,其机械模量与人体组织显著不同,因此限制了它们在生物电子学应用中的使用。在这里,我们在基于分散在硅酮基质中的微磁铁的软系统中观察到巨大的磁弹效应,达到的磁机械耦合因子表明比刚性对应物增强了高达四倍。使用波浪链模型解释了结果,展示了机械应力如何改变微磁铁的间距和偶极子排列,从而改变复合材料产生的磁场。结合在聚二甲基硅氧烷上图案化的液态金属线圈作为磁感应层,软磁弹复合材料可用于可拉伸和防水的磁弹发电机,该发电机贴合于人体皮肤。此类设备可用作可穿戴或可植入的电源和生物医学传感器,为以人体为中心的应用开辟了替代途径。