Mathavan Neashan, Singh Amit, Marques Francisco Correia, Günther Denise, Kuhn Gisela A, Wehrle Esther, Müller Ralph
Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
AO Research Institute Davos, Davos Platz, Switzerland.
Sci Adv. 2025 Jan 3;11(1):eadp8496. doi: 10.1126/sciadv.adp8496. Epub 2025 Jan 1.
In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis. We investigate the transcriptomic responses of cells as a function of the local strain magnitude by identifying the differential expression of genes in regions of high and low strain within a fracture site. Our platform thus has the potential to address fundamental open questions within the field and to discover mechano-responsive targets to enhance fracture healing.
近几十年来,骨力学生物学领域一直在寻找实验技术,以揭示机械调节骨折愈合现象背后的分子机制。骨折部位的每个细胞都处于不同的局部微环境中,这些微环境具有不同水平的机械应变;因此,保留每个细胞的空间位置对于将细胞反应与机械刺激联系起来至关重要。我们基于空间转录组学的“力学组学”平台,通过整合延时体内微型计算机断层扫描、空间转录组学和微观有限元分析,促进了对细胞分子谱相对于其局部体内机械环境的空间分辨分析。我们通过识别骨折部位高应变和低应变区域中基因的差异表达,研究细胞的转录组反应与局部应变大小的关系。因此,我们的平台有潜力解决该领域内的基本开放性问题,并发现机械反应靶点以促进骨折愈合。