Suppr超能文献

基于高光谱成像结合深度学习快速测定和可视化油茶种子中的水分含量

Determination and visualization of moisture content in Camellia oleifera seeds rapidly based on hyperspectral imaging combined with deep learning.

作者信息

Yuan Weidong, Zhou Hongping, Zhang Cong, Zhou Yu, Wu Yu, Jiang Xuesong, Jiang Hongzhe

机构信息

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.

College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2025 Apr 5;330:125676. doi: 10.1016/j.saa.2024.125676. Epub 2024 Dec 27.

Abstract

Moisture content (MC) is crucial for the storage, transportation, and processing of Camellia oleifera seeds. The purpose of this study was to investigate the feasibility for detecting MC in Camellia oleifera seeds using visible near-infrared hyperspectral imaging (VNIR-HSI) (374.98 ∼ 1038.79 nm) coupled with deep learning (DL) methods. Firstly, a method was proposed that utilized particle swarm optimization (PSO) to search for the optimal hyperparameters (batch size and learning rate) in the convolutional neural network regression (CNNR) model. The prediction performance of various models including partial least squares regression (PLSR), support vector machine regression (SVR), AlexNet, and CNNR was compared using both raw spectral data and preprocessed data. Then, four feature extraction algorithms (successive projection algorithm (SPA), competitive adaptive reweighted sampling (CARS), PSO, and the optimal DL framework) were used to extract spectral variables. The optimal hybrid prediction model PSO-CNN-SVR was determined, with coefficient of determination (R) of 0.918 in prediction set. In addition, the optimal simplified model was used to generate spatial distributions to visualize MC in Camellia oleifera seeds. The study results showed that the HSI technique combined with DL provides a reliable and efficient approach for achieving non-destructive detection and visualization of MC in Camellia oleifera seeds.

摘要

水分含量(MC)对于油茶籽的储存、运输和加工至关重要。本研究的目的是探讨使用可见近红外高光谱成像(VNIR-HSI)(374.98 ∼ 1038.79 nm)结合深度学习(DL)方法检测油茶籽中水分含量的可行性。首先,提出了一种利用粒子群优化(PSO)在卷积神经网络回归(CNNR)模型中搜索最优超参数(批量大小和学习率)的方法。使用原始光谱数据和预处理数据比较了包括偏最小二乘回归(PLSR)、支持向量机回归(SVR)、AlexNet和CNNR在内的各种模型的预测性能。然后,使用四种特征提取算法(连续投影算法(SPA)、竞争性自适应重加权采样(CARS)、PSO和最优DL框架)提取光谱变量。确定了最优混合预测模型PSO-CNN-SVR,预测集中的决定系数(R)为0.918。此外,使用最优简化模型生成空间分布以可视化油茶籽中的水分含量。研究结果表明,HSI技术与DL相结合为实现油茶籽中水分含量的无损检测和可视化提供了一种可靠且高效的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验