Suppr超能文献

利用口腔作为喉癌与白斑病鉴别替代指标的喉癌无创筛查:ESS技术与人工智能支持的统计建模的新应用

Non-invasive screening for laryngeal cancer using the oral cavity as a proxy for differentiation of laryngeal cancer versus leukoplakia: A novel application of ESS technology and artificial intelligence supported statistical modeling.

作者信息

Sakharkar M, Spokas G, Berry L, Daniels K, Nithagon P, Rodriguez-Diaz E, Tracy L, Noordzij J P, Bigio I, Grillone G, Krisciunas G P

机构信息

Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.

Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA; Department of Otolaryngology, Boston Medical Center, 800 Harrison Avenue, Boston, MA 02118, USA.

出版信息

Am J Otolaryngol. 2025 Jan-Feb;46(1):104581. doi: 10.1016/j.amjoto.2024.104581. Epub 2024 Dec 24.

Abstract

OBJECTIVE

This preliminary study tested whether non-invasive, remote Elastic Scattering Spectroscopy (ESS) measurements obtained in the oral cavity can be used as a proxy to accurately differentiate between patients with laryngeal cancer versus laryngeal leukoplakia.

METHODS

20 patients with laryngeal lesions [cancer (n = 10),leukoplakia (n = 10)] were clinically assessed and categorized by otolaryngologists per standard clinical practice. Patient demographics of age, race, sex, and smoking history were collected. A machine-learning artificial intelligence (AI) algorithm was applied to classify patients using ESS spectra of patients with benign laryngeal leukoplakia or laryngeal cancer. Specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), F1, and area-under-the-curve (AUC) were calculated. Additional algorithms stratified spectral data by sub-anatomical site and smoking status to explore diagnostic capability.

RESULTS

Overall, the algorithm had a sensitivity = 74 %, specificity = 40 %, PPV = 51 %, NPV = 64 %, F1 = 0.61 and AUC = 0.65. When stratifying by former and active smokers, algorithm sensitivities increased to 85 % and 77 %. Analysis by sub-anatomic location yielded an AUC = 0.77 for lateral tongue, and when stratified by (former/current) smoking status, demonstrated AUC = 0.94 and 0.83, sensitivities = 98 % and 76 %, and specificities = 85 % and 86 %. Algorithm output from the mucosal lip yielded sensitivity = 89 %, specificity = 88 %, PPV = 83 %, and NPV = 92 % in former smokers.

CONCLUSION

This pilot study demonstrated ESS technology coupled with AI-assisted statistical modeling, could differentiate between patients with laryngeal leukoplakia versus cancer with good precision, especially with smoking status and anatomic subclassification. If ESS can be utilized in the oral cavity as a non-invasive screening tool for laryngeal cancer, it would greatly facilitate early detection in specialized/non-specialized clinics, and under-resourced regions.

摘要

目的

本初步研究旨在测试在口腔中进行的非侵入性远程弹性散射光谱(ESS)测量是否可作为准确区分喉癌患者与喉白斑患者的替代方法。

方法

20例喉部病变患者[癌症(n = 10),白斑(n = 10)]按照标准临床实践由耳鼻喉科医生进行临床评估和分类。收集患者的年龄、种族、性别和吸烟史等人口统计学数据。应用机器学习人工智能(AI)算法,利用喉良性白斑或喉癌患者的ESS光谱对患者进行分类。计算特异性、敏感性、阳性预测值(PPV)、阴性预测值(NPV)、F1值和曲线下面积(AUC)。其他算法按亚解剖部位和吸烟状况对光谱数据进行分层,以探索诊断能力。

结果

总体而言,该算法的敏感性为74%,特异性为40%,PPV为51%,NPV为64%,F1值为0.61,AUC为0.65。按既往吸烟者和现吸烟者分层时,算法敏感性分别提高到85%和77%。按亚解剖位置分析,舌侧的AUC为0.77,按(既往/当前)吸烟状况分层时,AUC分别为0.94和0.83,敏感性分别为98%和76%,特异性分别为85%和86%。在既往吸烟者中,唇部黏膜的算法输出敏感性为89%,特异性为88%,PPV为83%,NPV为92%。

结论

这项初步研究表明,ESS技术结合人工智能辅助统计建模,能够高精度地区分喉白斑患者和喉癌患者,尤其是结合吸烟状况和解剖亚分类时。如果ESS能够作为一种非侵入性的喉癌筛查工具应用于口腔,将极大地促进在专科/非专科诊所及资源匮乏地区的早期检测。

相似文献

本文引用的文献

8
Laryngeal Leukoplakia: State of the Art Review.喉角化病:最新研究综述。
Otolaryngol Head Neck Surg. 2021 Jun;164(6):1153-1159. doi: 10.1177/0194599820965910. Epub 2020 Nov 10.
10
Optical Spectroscopy as a Method for Skin Cancer Risk Assessment.光学光谱学作为皮肤癌风险评估的一种方法。
Photochem Photobiol. 2019 Nov;95(6):1441-1445. doi: 10.1111/php.13140. Epub 2019 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验