Suppr超能文献

社交网络与健康数据共享的考量:概述

Considerations for Social Networks and Health Data Sharing: An Overview.

作者信息

Pasquale Dana K, Wolff Tom, Varela Gabriel, Adams Jimi, Mucha Peter J, Perry Brea L, Valente Thomas W, Moody James

机构信息

Department of Population Health Sciences, Duke University, Durham, NC, USA; Duke Network Analysis Center, Duke University, Durham, NC, USA.

Duke Network Analysis Center, Duke University, Durham, NC, USA; Medical Social Sciences, Northwestern University, Evanston, IL, USA.

出版信息

Ann Epidemiol. 2025 Feb;102:28-35. doi: 10.1016/j.annepidem.2024.12.014. Epub 2024 Dec 30.

Abstract

The use of network analysis as a tool has increased exponentially as more clinical researchers see the benefits of network data for modeling of infectious disease transmission or translational activities in a variety of areas, including patient-caregiving teams, provider networks, patient-support networks, and adoption of health behaviors or treatments, to name a few. Yet, relational data such as network data carry a higher risk of deductive disclosure. Cases of reidentification have occurred and this is expected to become more common as computational ability increases. Recent data sharing policies aim to promote reproducibility, support replicability, and protect federal investment in the effort to collect these research data by making them available for secondary analyses. However, typical practices to protect individual-level clinical research data may not be sufficiently protective of participant privacy in the case of network data, nor in some cases do they permit secondary data analysis. When sharing data, researchers must balance security, accessibility, reproducibility, and adaptability (suitability for secondary analyses). Here, we provide background about applying network analysis to health and clinical research, describe the pros and cons of applying typical practices for sharing clinical data to network data, and provide recommendations for sharing network data.

摘要

随着越来越多的临床研究人员认识到网络数据在多种领域(包括患者护理团队、医疗服务提供者网络、患者支持网络以及健康行为或治疗方法的采用等,仅举几例)用于传染病传播建模或转化活动的益处,将网络分析作为一种工具的使用呈指数级增长。然而,诸如网络数据之类的关系型数据存在更高的演绎性披露风险。重新识别案例已经发生,并且随着计算能力的提高,预计这种情况会变得更加普遍。最近的数据共享政策旨在通过使研究数据可用于二次分析来促进可重复性、支持可复制性并保护联邦在收集这些研究数据方面的投资。然而,保护个体层面临床研究数据的典型做法在网络数据的情况下可能不足以保护参与者隐私,而且在某些情况下也不允许进行二次数据分析。在共享数据时,研究人员必须在安全性、可访问性、可重复性和适应性(适合二次分析)之间取得平衡。在此,我们提供有关将网络分析应用于健康和临床研究的背景信息,描述将共享临床数据的典型做法应用于网络数据的利弊,并提供共享网络数据的建议。

相似文献

1
Considerations for Social Networks and Health Data Sharing: An Overview.社交网络与健康数据共享的考量:概述
Ann Epidemiol. 2025 Feb;102:28-35. doi: 10.1016/j.annepidem.2024.12.014. Epub 2024 Dec 30.

本文引用的文献

1
Recommendations for sharing network data and materials.共享网络数据和材料的建议。
Netw Sci (Camb Univ Press). 2024 Dec;12(4):404-417. doi: 10.1017/nws.2024.16. Epub 2024 Oct 30.
2
Network ecology: Tie fitness in social context(s).网络生态学:社会背景下的联结适应性。
Soc Networks. 2024 Jan;76:174-190. doi: 10.1016/j.socnet.2023.09.005. Epub 2023 Sep 29.
6
When Friends Bring You Down: Peer Stress Proliferation and Suicidality.当朋友让你情绪低落时:同伴压力的扩散与自杀倾向。
Arch Suicide Res. 2021 Jul-Sep;25(3):672-689. doi: 10.1080/13811118.2020.1746939. Epub 2020 Apr 7.
7
Diffusion/Contagion Processes on Social Networks.社交网络上的扩散/传染过程。
Health Educ Behav. 2020 Apr;47(2):235-248. doi: 10.1177/1090198120901497. Epub 2020 Feb 24.
10
GenBank.GenBank
Nucleic Acids Res. 2020 Jan 8;48(D1):D84-D86. doi: 10.1093/nar/gkz956.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验