Suppr超能文献

针对认知障碍养老院居民的员工报告的EOLD-CAD测量方法的心理测量学评估

A Psychometric Evaluation of the Staff-Reported EOLD-CAD Measure Among Nursing Home Residents With Cognitive Impairment.

作者信息

Cagle John G, Stump Timothy E, Tu Wanzhu, Ersek Mary, Floyd Alexander, Van den Block Lieve, Zhang Peiyan, Becker Todd D, Unroe Kathleen T

机构信息

University of Maryland School of Social Work, Baltimore, Maryland, USA.

Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA.

出版信息

Int J Geriatr Psychiatry. 2025 Jan;40(1):e70037. doi: 10.1002/gps.70037.

Abstract

OBJECTIVES

The End-of-Life Dementia-Comfort Assessment in Dying (EOLD-CAD) scale is one of the few outcome instruments designed to capture symptom burden and well-being among nursing home residents with dementia; however, psychometric evaluations of the EOLD-CAD are limited. Although the instrument is often used to assess outcomes prospectively, it was originally developed and tested as a postmortem assessment. The purpose of this study is to evaluate the instrument properties of the EOLD-CAD using staff reports from a large sample of nursing home residents with cognitive impairment prior to death.

METHODS

Using data from the multi-state UPLIFT clinical trial, this study evaluated the psychometric properties of the EOLD-CAD from 168 nursing home staff members reporting outcomes for 611 living residents with moderate to severe cognitive impairment. Staff also reported on resident quality-of-life using two different single item measures. We conducted confirmatory factor analysis (CFA) and assessed construct validity, inter-item reliability, and observer report bias.

RESULTS

CFA produced a four-factor solution. All factor loadings were > 0.40, ranging from 0.61-0.95 for Physical Distress, 0.71-0.91 for Dying Symptoms, 0.61-0.78 for Emotional Distress, and 0.89-0.94 for Well-Being. Model indices suggest a good fit to the data with root mean square error of approximation (RMSEA) = 0.053 (95% CI = (0.044, 0.062)), comparative fit index (CFI) = 0.971, and standardized root mean square residual (SRMR) = 0.093, with the SRMR slightly above the conventional threshold of > 0.08. Based on intraclass correlation coefficients (ICC), patterns of observer reports were identified among staff who provided data for multiple residents. ICCs were notably high (> 0.60) for Well-Being items. The EOLD-CAD elicited a Cronbach's alpha of 0.73, and the instrument was negatively correlated with items measuring resident quality of life.

CONCLUSIONS

We found that when the EOLD-CAD was completed by nursing home staff familiar with the respective residents, observer-based patterns were detectable. Such patterns were adjusted for in our CFA, from we found that the EOLD-CAD exhibited multidimensionality with a four-factor structure capturing: Physical Distress, Emotional Distress, Dying Symptoms, and Well-Being. In addition to the CFA, the EOLD-CAD demonstrated generally valid and reliable psychometric properties in our population of long-stay nursing home residents with moderate to severe cognitive impairment.

TRIAL REGISTRATION

ClinicalTrials.gov: NCT04520698.

摘要

目的

临终痴呆症临终舒适评估(EOLD-CAD)量表是少数旨在衡量痴呆症疗养院居民症状负担和生活质量的结局评估工具之一;然而,对EOLD-CAD的心理测量学评估有限。尽管该工具经常用于前瞻性评估结局,但它最初是作为死后评估开发和测试的。本研究的目的是使用来自大量认知障碍疗养院居民死亡前的工作人员报告,评估EOLD-CAD的工具特性。

方法

利用多州UPLIFT临床试验的数据,本研究评估了168名疗养院工作人员报告的611名中度至重度认知障碍在世居民的EOLD-CAD心理测量特性。工作人员还使用两种不同的单项测量方法报告了居民的生活质量。我们进行了验证性因素分析(CFA),并评估了结构效度、项目间信度和观察者报告偏差。

结果

CFA得出了一个四因素解决方案。所有因素负荷均>0.40,身体痛苦方面为0.61-0.95,临终症状方面为0.71-0.91,情绪困扰方面为0.61-0.78,生活质量方面为0.89-0.94。模型指标表明数据拟合良好,近似均方根误差(RMSEA)=0.053(95%CI=(0.044,0.062)),比较拟合指数(CFI)=0.971,标准化均方根残差(SRMR)=0.093,SRMR略高于传统阈值>0.08。基于组内相关系数(ICC),在为多名居民提供数据的工作人员中确定了观察者报告模式。生活质量项目的ICC显著较高(>0.60)。EOLD-CAD的Cronbach's alpha为0.73,该工具与测量居民生活质量的项目呈负相关。

结论

我们发现,当熟悉各自居民情况的疗养院工作人员完成EOLD-CAD时,可以检测到基于观察者的模式。在我们的CFA中对这些模式进行了调整,我们发现EOLD-CAD表现出多维性,具有一个四因素结构,涵盖身体痛苦、情绪困扰、临终症状和生活质量。除了CFA,EOLD-CAD在我们的中度至重度认知障碍长期疗养院居民群体中表现出总体有效和可靠的心理测量特性。

试验注册

ClinicalTrials.gov:NCT04520698。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验