Suppr超能文献

从系统发育学中了解病原体的适应度动态。

Learning the fitness dynamics of pathogens from phylogenies.

作者信息

Lefrancq Noémie, Duret Loréna, Bouchez Valérie, Brisse Sylvain, Parkhill Julian, Salje Henrik

机构信息

Department of Genetics, University of Cambridge, Cambridge, UK.

Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.

出版信息

Nature. 2025 Jan;637(8046):683-690. doi: 10.1038/s41586-024-08309-9. Epub 2025 Jan 1.

Abstract

The dynamics of the genetic diversity of pathogens, including the emergence of lineages with increased fitness, is a foundational concept of disease ecology with key public-health implications. However, the identification of such lineages and estimation of associated fitness remain challenging, and is rarely done outside densely sampled systems. Here we present phylowave, a scalable approach that summarizes changes in population composition in phylogenetic trees, enabling the automatic detection of lineages based on shared fitness and evolutionary relationships. We use our approach on a broad set of viruses and bacteria (SARS-CoV-2, influenza A subtype H3N2, Bordetella pertussis and Mycobacterium tuberculosis), which include both well-studied and understudied threats to human health. We show that phylowave recovers the main known circulating lineages for each pathogen and that it can detect specific amino acid changes linked to fitness changes. Furthermore, phylowave identifies previously undetected lineages with increased fitness, including three co-circulating B. pertussis lineages. Inference using phylowave is robust to uneven and limited observations. This widely applicable approach provides an avenue to monitor evolution in real time to support public-health action and explore fundamental drivers of pathogen fitness.

摘要

病原体遗传多样性的动态变化,包括适应性增强的谱系的出现,是疾病生态学的一个基本概念,对公共卫生具有关键影响。然而,识别此类谱系并估计相关适应性仍然具有挑战性,并且在密集采样系统之外很少进行。在这里,我们提出了phylowave,这是一种可扩展的方法,可总结系统发育树中种群组成的变化,从而能够基于共享的适应性和进化关系自动检测谱系。我们将我们的方法应用于广泛的病毒和细菌(严重急性呼吸综合征冠状病毒2、甲型H3N2流感病毒、百日咳博德特氏菌和结核分枝杆菌),其中包括对人类健康既有充分研究又研究不足的威胁。我们表明,phylowave可以识别每种病原体的主要已知流行谱系,并且可以检测到与适应性变化相关的特定氨基酸变化。此外,phylowave还识别出了以前未检测到的适应性增强的谱系,包括三个共同流行的百日咳博德特氏菌谱系。使用phylowave进行的推断对于不均匀和有限的观察结果具有鲁棒性。这种广泛适用的方法为实时监测进化提供了一条途径,以支持公共卫生行动并探索病原体适应性的基本驱动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a46/11735385/70e91cbc561b/41586_2024_8309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验