Suppr超能文献

高危乳腺病变:一种预测病理升级并减少不必要手术切除的肿瘤内和肿瘤周围联合放射组学列线图模型

High-risk breast lesions: a combined intratumoral and peritumoral radiomics nomogram model to predict pathologic upgrade and reduce unnecessary surgical excision.

作者信息

Liao Tingting, Yang Yuting, Lin Xiaohui, Ouyang Rushan, Deng Yaohong, Ma Jie

机构信息

Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China.

Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.

出版信息

Front Oncol. 2024 Dec 18;14:1479565. doi: 10.3389/fonc.2024.1479565. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to develop a nomogram that combines intratumoral and peritumoral radiomics based on multi-parametric MRI for predicting the postoperative pathological upgrade of high-risk breast lesions and sparing unnecessary surgeries.

METHODS

In this retrospective study, 138 patients with high-risk breast lesions (January 1, 2019, to January 1, 2023) were randomly divided into a training set (n=96) and a validation set (n=42) at a 7:3 ratio. The best-performing MRI sequence for intratumoral radiomics was selected to develop individual and combined radiomics scores (Rad-Scores). The best Rad-Score was integrated with independent clinical and radiological risk factors by a nomogram. The diagnostic performance of the nomogram was evaluated using the area under the curve (AUC) of the receiver operating characteristic curve, along with accuracy, specificity, and sensitivity analysis.

RESULTS

The nomogram based on the combined intratumoral and peritumoral Rad-Score of the dynamic contrast-enhanced MRI and clinical-radiological features achieved superior diagnostic efficacy in the training (AUC=0.914) and validation set (AUC=0.867) compared to other models. It also achieved a specificity and accuracy of 85.1% and 82.3% during training and 66.7% and 76.2% during validation.

CONCLUSION

The nomogram encapsulating the combined intratumoral and peritumoral radiomics demonstrated superior diagnostic efficacy in postoperative pathological upgrades of high-risk breast lesions, enabling clinicians to make more informed decisions about interventions and follow-up strategies.

摘要

目的

本研究旨在基于多参数磁共振成像(MRI)开发一种结合瘤内和瘤周放射组学的列线图,以预测高危乳腺病变的术后病理升级情况,并避免不必要的手术。

方法

在这项回顾性研究中,138例高危乳腺病变患者(2019年1月1日至2023年1月1日)按7:3的比例随机分为训练集(n = 96)和验证集(n = 42)。选择瘤内放射组学表现最佳的MRI序列来制定个体和联合放射组学评分(Rad-Scores)。通过列线图将最佳Rad-Score与独立的临床和放射学危险因素相结合。使用受试者操作特征曲线的曲线下面积(AUC)以及准确性、特异性和敏感性分析来评估列线图的诊断性能。

结果

与其他模型相比,基于动态对比增强MRI的瘤内和瘤周联合Rad-Score以及临床放射学特征的列线图在训练集(AUC = 0.914)和验证集(AUC = 0.867)中具有更高的诊断效能。在训练期间,其特异性和准确性分别达到85.1%和82.3%,在验证期间分别为66.7%和76.2%。

结论

包含瘤内和瘤周联合放射组学的列线图在高危乳腺病变的术后病理升级中显示出卓越的诊断效能,使临床医生能够在干预措施和随访策略方面做出更明智的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f90d/11688276/0064c4ceaf42/fonc-14-1479565-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验