Suppr超能文献

基于机器学习的关节炎全膝关节置换个体化生存预测模型:来自骨关节炎倡议的数据。

Machine Learning-Based Individualized Survival Prediction Model for Total Knee Replacement in Osteoarthritis: Data From the Osteoarthritis Initiative.

机构信息

University of Montreal Hospital Research Centre, Montreal, Quebec, Canada, and Laval University Hospital Research Centre, Montreal, Quebec, Canada.

University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.

出版信息

Arthritis Care Res (Hoboken). 2021 Oct;73(10):1518-1527. doi: 10.1002/acr.24601. Epub 2021 Aug 26.

Abstract

OBJECTIVE

By using machine learning, our study aimed to build a model to predict risk and time to total knee replacement (TKR) of an osteoarthritic knee.

METHODS

Features were from the Osteoarthritis Initiative (OAI) cohort at baseline. Using the lasso method for variable selection in the Cox regression model, we identified the 10 most important characteristics among 1,107 features. The prognostic power of the selected features was assessed by the Kaplan-Meier method and applied to 7 machine learning methods: Cox, DeepSurv, random forests algorithm, linear/kernel support vector machine (SVM), and linear/neural multi-task logistic regression models. As some of the 10 first-found features included similar radiographic measurements, we further looked at using the least number of features without compromising the accuracy of the model. Prediction performance was assessed by the concordance index, Brier score, and time-dependent area under the curve (AUC).

RESULTS

Ten features were identified and included radiographs, bone marrow lesions of the medial condyle on magnetic resonance imaging, hyaluronic acid injection, performance measure, medical history, and knee-related symptoms. The methodologies Cox, DeepSurv, and linear SVM demonstrated the highest accuracy (concordance index scores of 0.85, Brier score of 0.02, and an AUC of 0.87). DeepSurv was chosen to build the prediction model to estimate the time to TKR for a given knee. Moreover, we were able to decrease the features to only 3 and maintain the high accuracy (concordance index of 0.85, Brier score of 0.02, and AUC of 0.86), which included bone marrow lesions, Kellgren/Lawrence grade, and knee-related symptoms, to predict risk and time of a TKR event.

CONCLUSION

For the first time, we developed a model using the OAI cohort to predict with high accuracy if a given osteoarthritic knee would require TKR, when a TKR would be required, and who would likely progress fast toward this event.

摘要

目的

通过机器学习,我们的研究旨在建立一个预测骨关节炎膝关节风险和全膝关节置换(TKR)时间的模型。

方法

特征来自 Osteoarthritis Initiative(OAI)队列的基线数据。在 Cox 回归模型中,我们使用套索法进行变量选择,从 1107 个特征中确定了 10 个最重要的特征。通过 Kaplan-Meier 方法评估所选特征的预后能力,并将其应用于 7 种机器学习方法:Cox、DeepSurv、随机森林算法、线性/核支持向量机(SVM)和线性/神经网络多任务逻辑回归模型。由于 10 个首先找到的特征中包含一些类似的放射学测量值,因此我们进一步研究了在不影响模型准确性的情况下使用最少数量的特征。通过一致性指数、Brier 评分和时间依赖的曲线下面积(AUC)评估预测性能。

结果

确定了 10 个特征,包括 X 光片、内侧髁磁共振成像骨髓病变、透明质酸注射、表现测量、病史和膝关节相关症状。Cox、DeepSurv 和线性 SVM 方法表现出最高的准确性(一致性指数评分 0.85、Brier 评分 0.02 和 AUC 0.87)。选择 DeepSurv 来构建预测模型,以估计给定膝关节的 TKR 时间。此外,我们能够将特征减少到仅 3 个,并保持高准确性(一致性指数 0.85、Brier 评分 0.02 和 AUC 0.86),包括骨髓病变、Kellgren/Lawrence 分级和膝关节相关症状,以预测 TKR 事件的风险和时间。

结论

这是首次使用 OAI 队列开发模型,以高精度预测给定的骨关节炎膝关节是否需要 TKR、何时需要 TKR 以及谁可能会快速进展到这一事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验