Suppr超能文献

印度一家三级护理医院收治的道路交通事故中驾驶员受害者的物质使用及睡眠相关问题患病率

Prevalence of Substance Use and Sleep-Related Problems Among Driver Victims Involved in Road Traffic Accidents Presenting to a Tertiary Care Hospital in India.

作者信息

Lalringzo Esther, Dhiman Vishal, Gupta Ravi, Sarkar Bhaskar, Bhute Ashish R, Naithani Manisha, Basu Aniruddha

机构信息

Department of Psychiatry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND.

Department of Trauma and Orthopaedics, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND.

出版信息

Cureus. 2024 Dec 1;16(12):e74934. doi: 10.7759/cureus.74934. eCollection 2024 Dec.

Abstract

BACKGROUND

Road traffic accidents (RTAs) are a critical public health problem leading to significant morbidity, mortality, and socioeconomic losses. Despite known risk factors like substance use and sleep-related problems, there is limited research on the prevalence of these factors among drivers who met with RTAs. Hence, this study aimed to gain insight into the prevalence of substance use and sleep-related problems among this population attending a trauma center in the northern State of India.

METHODOLOGY

A cross-sectional study was conducted among 383 driver victims (DVs) who presented to a publicly funded tertiary care hospital's trauma emergency department of the Himalayan State of India following RTAs. The hospital's catchment area is vast and caters to people from both hilly and plain areas. Data were collected for sociodemographic characteristics, clinical parameters, and accident-related factors using a semi-structured proforma. Substance use-related problems were assessed through detailed history evaluation, thorough examinations, structured questionnaires, and body fluid (blood and urine) drug analysis. Sleep-related parameters were evaluated in detail, including excessive daytime sleepiness (EDS), the functional outcome of sleepiness, and the chronotype using structured and validated questionnaires. The nature, site of injuries, and their severity were determined using the Abbreviated Injury Severity (AIS) Scale.

RESULTS

Among DVs, 221 (57.7%) tested positive for alcohol; 71 (18.6%) had used other psychotropic substances, with cannabis being the most common among them; and 56 (14.6%) reported using multiple substances. Eighty-three (21.7%) participants had EDS, and 102 (26.6%) experienced fatigue and sleepiness during the accident. The most common type of injuries was fracture and dislocation 206 (53.8%), with the extremities (both upper and lower) being the most common body region (218, 56.9%) involved, along with head traumas in equal proportions. Injuries were predominantly minor, yet a concerning 7.6% of the participants experienced severe trauma.

CONCLUSION

The study highlights the substantial role of substance use and sleep-related problems in RTAs, emphasizing the need for interventions targeting these factors to reduce the burden of RTAs. Policies enforcing stricter substance use regulations and promoting sleep health awareness and sleep assessments for drivers could significantly mitigate RTAs and improve road safety in India.

摘要

背景

道路交通事故(RTAs)是一个严重的公共卫生问题,会导致大量的发病、死亡以及社会经济损失。尽管已知诸如物质使用和睡眠相关问题等风险因素,但针对遭遇道路交通事故的驾驶员中这些因素的患病率的研究却很有限。因此,本研究旨在深入了解印度北部某邦一家创伤中心的此类人群中物质使用和睡眠相关问题的患病率。

方法

对383名驾驶员受害者(DVs)进行了一项横断面研究,这些驾驶员在遭遇道路交通事故后被送往印度喜马拉雅邦一家由公共资金资助的三级护理医院的创伤急诊科。该医院的服务区域广阔,服务对象包括来自山区和平原地区的人群。使用半结构化表格收集社会人口学特征、临床参数和事故相关因素的数据。通过详细的病史评估、全面检查、结构化问卷以及体液(血液和尿液)药物分析来评估与物质使用相关的问题。使用结构化且经过验证的问卷对与睡眠相关的参数进行详细评估,包括白天过度嗜睡(EDS)、嗜睡的功能后果以及昼夜节律类型。使用简明损伤 severity(AIS)量表确定损伤的性质、部位及其严重程度。

结果

在驾驶员受害者中,221人(57.7%)酒精检测呈阳性;71人(18.6%)使用过其他精神活性物质,其中大麻最为常见;56人(14.6%)报告使用过多种物质。83名(21.7%)参与者有白天过度嗜睡症状,102名(26.6%)在事故发生时感到疲劳和困倦。最常见的损伤类型是骨折和脱位,共206例(53.8%),四肢(上肢和下肢)是最常受累的身体部位(218例,56.9%),头部创伤的比例相同。损伤主要为轻伤,但令人担忧的是,7.6%的参与者经历了严重创伤。

结论

该研究强调了物质使用和睡眠相关问题在道路交通事故中的重要作用,强调需要针对这些因素进行干预,以减轻道路交通事故的负担。在印度,实施更严格的物质使用法规以及提高驾驶员的睡眠健康意识和睡眠评估的政策,可能会显著减少道路交通事故并改善道路安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a21e/11688524/0d9b1381d69c/cureus-0016-00000074934-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验