Suppr超能文献

解读食管腺癌的预后格局:一种与PAN细胞焦亡相关的基因特征

Deciphering the Prognostic Landscape of Esophageal Adenocarcinoma: A PANoptosis-Related Gene Signature.

作者信息

Fu Haijing, Liu Mengyan, Li Huiyu, Yu Li, Song Haizhu, Chu Xiaoyuan, Bao Wei

机构信息

Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China.

Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.

出版信息

J Cancer. 2025 Jan 1;16(1):183-200. doi: 10.7150/jca.102180. eCollection 2025.

Abstract

Esophageal adenocarcinoma (EAC) remains a challenging malignancy with low survival rates despite advances in treatment. Understanding the molecular mechanisms and identifying reliable prognostic markers are crucial for improving clinical outcomes. We conducted a comprehensive bioinformatics analysis utilizing TCGA, GTEx, and GEO datasets to identify PANoptosis-related genes (PRGs) associated with EAC. From this analysis, we developed a prognostic risk score model based on 8 prognostically significant differentially expressed PRGs. This model was externally validated and compared with traditional staging methods. Functional analyses, including gene expression profiling, pathway enrichment analysis, and immune infiltration assessment, were conducted to elucidate the biological mechanisms influencing prognosis. To identify PANoptosis-related hub genes, we employed Weighted Gene Co-expression Network Analysis (WGCNA). The expression profiles of the hub gene were examined using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Furthermore, the effects of the hub genes knockdown or overexpression on EAC cell behavior were verified through in vitro experiments, including cell counting kit (CCK)-8, transwell and wound healing assay. The prognostic risk score model effectively predicts patient outcomes, supported by principal component analysis (PCA) and receiver operating characteristic (ROC) curves. The resulting prognostic nomogram, which integrates clinical features and the risk score, outperforms traditional staging systems, offering enhanced predictive accuracy. WGCNA identified gene modules significantly correlated with EAC clinical traits, highlighting the biological relevance of these genes to disease progression. Functional enrichment analyses shed light on significant biological processes and pathways associated with high-risk EAC, including lipid metabolism and hormone transport. Immune infiltration analysis revealed distinct immune profiles between risk groups, pinpointing potential immunotherapeutic targets. Furthermore, drug sensitivity analysis indicated specific compounds that may be more effective in high-risk groups. Notably, MMP12 emerged as a key mediator and further experimental results revealed that the lower the degree of cell differentiation, the higher the expression level of MMP12 in EAC. The knockdown of MMP12 significantly inhibited cell proliferation and migration. Our findings present a validated risk scoring model and prognostic nomogram as valuable tools for predicting patient outcomes and guiding personalized treatments in EAC. This study underscores the potential of molecular clustering and PANoptosis-based prognostic features in predicting patient survival and understanding the tumor microenvironment's complexity, especially the metabolic and immune profiles, in EAC. These insights enhance our understanding of PANoptosis in EAC and provide new avenues for its diagnosis and therapy.

摘要

尽管治疗取得了进展,但食管腺癌(EAC)仍然是一种具有挑战性的恶性肿瘤,生存率较低。了解其分子机制并确定可靠的预后标志物对于改善临床结果至关重要。我们利用TCGA、GTEx和GEO数据集进行了全面的生物信息学分析,以识别与EAC相关的全程序性细胞死亡相关基因(PRGs)。通过该分析,我们基于8个具有预后意义的差异表达PRGs建立了一个预后风险评分模型。该模型在外部得到验证,并与传统分期方法进行了比较。进行了功能分析,包括基因表达谱分析、通路富集分析和免疫浸润评估,以阐明影响预后的生物学机制。为了识别全程序性细胞死亡相关的枢纽基因,我们采用了加权基因共表达网络分析(WGCNA)。使用逆转录定量PCR(RT-qPCR)和蛋白质免疫印迹法检测枢纽基因的表达谱。此外,通过体外实验,包括细胞计数试剂盒(CCK)-8、Transwell和伤口愈合试验,验证了枢纽基因敲低或过表达对EAC细胞行为的影响。主成分分析(PCA)和受试者工作特征(ROC)曲线支持预后风险评分模型能够有效预测患者预后。由此产生的整合临床特征和风险评分的预后列线图优于传统分期系统,具有更高的预测准确性。WGCNA识别出与EAC临床特征显著相关的基因模块,突出了这些基因与疾病进展的生物学相关性。功能富集分析揭示了与高危EAC相关的重要生物学过程和通路,包括脂质代谢和激素转运。免疫浸润分析揭示了风险组之间不同的免疫特征,确定了潜在的免疫治疗靶点。此外,药物敏感性分析表明某些特定化合物可能在高危组中更有效。值得注意的是,基质金属蛋白酶12(MMP12)成为关键介质,进一步的实验结果显示,在EAC中细胞分化程度越低,MMP12的表达水平越高。敲低MMP12可显著抑制细胞增殖和迁移。我们的研究结果提供了一个经过验证的风险评分模型和预后列线图,作为预测EAC患者预后和指导个性化治疗的有价值工具。本研究强调了分子聚类和基于全程序性细胞死亡的预后特征在预测EAC患者生存以及理解肿瘤微环境复杂性(尤其是代谢和免疫特征)方面的潜力。这些见解加深了我们对EAC中全程序性细胞死亡的理解,并为其诊断和治疗提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c5/11660136/da2e28f9e151/jcav16p0183g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验