Suppr超能文献

通过直接配置法从运动学进行稳健的动力学估计。

Robust kinetics estimation from kinematics via direct collocation.

作者信息

Wang Kuan, Zhang Linlin, Liang Leichao, Shao Jiang, Chen Xinpeng, Wang Huihao

机构信息

College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.

YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.

出版信息

Front Bioeng Biotechnol. 2024 Dec 18;12:1483225. doi: 10.3389/fbioe.2024.1483225. eCollection 2024.

Abstract

INTRODUCTION

Accurate joint moment analysis is essential in biomechanics, and the integration of direct collocation with markerless motion capture offers a promising approach for its estimation. However, markerless motion capture can introduce varying degrees of error in tracking trajectories. This study aims to evaluate the effectiveness of the direct collocation method in estimating kinetics when joint trajectory data are impacted by noise.

METHODS

We focused on walking and squatting movements as our target activities. To assess the method's robustness, we created five groups with differing noise levels-noise-free, mild noise, noisy group1, noisy group2, and a Gaussian noise group-in the joint center trajectories. Our approach involved combining joint center tracking with biological terms within the direct collocation scheme to address noise-related challenges. We calculated kinematics, joint moments, and ground reaction forces for comparison across the different noise groups.

RESULTS

For the walking task, the mean absolute errors (MAEs) for the knee flexion moments were 0.103, 0.113, 0.127, 0.129, and 0.116 Nm/kg across the respective noise levels. The corresponding MAEs of the ankle flexion moment were 0.130, 0.133, 0.145, 0.131, and 0.138 Nm/kg. The hip flexion moment had MAEs of 0.182, 0.204, 0.242, 0.246, and 0.249 Nm/kg in the respective groups. In squatting, the MAEs of ankle flexion moments were 0.207, 0.219, 0.217, 0.253, and 0.227 Nm/kg in the noise-free, mild noise, noisy group1, noisy group2, and the Gaussian noise group, respectively. The MAEs of the knee flexion moments were 0.177, 0.196, 0.198, 0.197, and 0.221 Nm/kg, whereas the mean MAEs of the hip flexion moments were 0.125, 0.135, 0.141, 0.161, and 0.178 Nm/kg in the respective groups.

CONCLUSION

The results highlight that the direct collocation method incorporating both tracking and biological terms in the cost function could robustly estimate joint moments during walking and squatting across various noise levels. Currently, this method is better suited to reflect general activity dynamics than subject-specific dynamics in clinical practice. Future research should focus on refining cost functions to achieve an optimal balance between robustness and accuracy.

摘要

引言

精确的关节力矩分析在生物力学中至关重要,直接配置法与无标记运动捕捉技术的结合为其估计提供了一种很有前景的方法。然而,无标记运动捕捉在跟踪轨迹时可能会引入不同程度的误差。本研究旨在评估当关节轨迹数据受到噪声影响时,直接配置法在估计动力学方面的有效性。

方法

我们将步行和深蹲运动作为目标活动。为了评估该方法的稳健性,我们在关节中心轨迹中创建了五组不同噪声水平的数据集——无噪声、轻度噪声、噪声组1、噪声组2和高斯噪声组。我们的方法是在直接配置方案中结合关节中心跟踪和生物学项,以应对与噪声相关的挑战。我们计算了运动学、关节力矩和地面反作用力,以便在不同噪声组之间进行比较。

结果

对于步行任务,在各个噪声水平下,膝关节屈曲力矩的平均绝对误差(MAE)分别为0.103、0.113、0.127、0.129和0.116 Nm/kg。踝关节屈曲力矩的相应MAE分别为0.130、0.133、0.145、0.131和0.138 Nm/kg。在各个组中,髋关节屈曲力矩的MAE分别为0.182、0.204、0.242、0.246和0.249 Nm/kg。在深蹲过程中,在无噪声、轻度噪声、噪声组1、噪声组2和高斯噪声组中,踝关节屈曲力矩的MAE分别为0.207、0.219、0.217、0.253和0.227 Nm/kg。膝关节屈曲力矩的MAE分别为0.177、0.196、0.198、0.197和0.221 Nm/kg,而在各个组中,髋关节屈曲力矩的平均MAE分别为0.125、0.135、0.141、0.161和0.178 Nm/kg。

结论

结果表明,在成本函数中结合跟踪和生物学项的直接配置法能够在各种噪声水平下稳健地估计步行和深蹲过程中的关节力矩。目前,在临床实践中,该方法更适合反映一般活动动态,而非个体特定动态。未来的研究应专注于优化成本函数,以在稳健性和准确性之间实现最佳平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7bc/11688375/5a39dc1940f8/fbioe-12-1483225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验