Suppr超能文献

通过全基因组关联研究及其他方法推动绿豆作物改良。

Advancing crop improvement through GWAS and beyond in mung bean.

作者信息

Ahmed Syed Riaz, Asghar Muhammad Jawad, Hameed Amjad, Ghaffar Maria, Shahid Muhammad

机构信息

Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Science (NIAB-C, PIEAS), Faisalabad, Pakistan.

Plant Breeding and Genetics Division, Mung Bean and Lentil Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan.

出版信息

Front Plant Sci. 2024 Dec 18;15:1436532. doi: 10.3389/fpls.2024.1436532. eCollection 2024.

Abstract

Accessing the underlying genetics of complex traits, especially in small grain pulses is an important breeding objective for crop improvement. Genome-wide association studies (GWAS) analyze thousands of genetic variants across several genomes to identify links with specific traits. This approach has discovered many strong associations between genes and traits, and the number of associated variants is expected to continue to increase as GWAS sample sizes increase. GWAS has a range of applications like understanding the genetic architecture associated with phenotype, estimating genetic correlation and heritability, developing genetic maps based on novel identified quantitative trait loci (QTLs)/genes, and developing hypotheses related to specific traits in the next generation. So far, several causative alleles have been identified using GWAS which had not been previously detected using QTL mapping. GWAS has already been successfully applied in mung bean () to identify SNPs/alleles that are used in breeding programs for enhancing yield and improvement against biotic and abiotic factors. In this review, we summarize the recently used advanced genetic tools, the concept of GWAS and its improvement in combination with structural variants, the significance of combining high-throughput phenotyping and genome editing with GWAS, and also highlights the genetic discoveries made with GWAS. Overall, this review explains the significance of GWAS with other advanced tools in the future, concluding with an overview of the current and future applications of GWAS with some recommendations.

摘要

了解复杂性状的潜在遗传学,尤其是小粒豆类作物的遗传学,是作物改良的一项重要育种目标。全基因组关联研究(GWAS)分析多个基因组中的数千个遗传变异,以确定与特定性状的关联。这种方法已经发现了许多基因与性状之间的强关联,并且随着GWAS样本量的增加,相关变异的数量预计还会继续增加。GWAS有一系列应用,如了解与表型相关的遗传结构、估计遗传相关性和遗传力、基于新发现的数量性状位点(QTL)/基因绘制遗传图谱,以及提出与下一代特定性状相关的假设。到目前为止,已经使用GWAS鉴定了几个以前通过QTL定位未检测到的致病等位基因。GWAS已经成功应用于绿豆,以鉴定用于育种计划以提高产量和增强对生物和非生物因素抗性的单核苷酸多态性(SNP)/等位基因。在这篇综述中,我们总结了最近使用的先进遗传工具、GWAS的概念及其与结构变异相结合的改进、将高通量表型分析和基因组编辑与GWAS相结合的意义,并强调了通过GWAS取得的遗传发现。总体而言,这篇综述解释了GWAS与其他先进工具在未来的重要性,最后概述了GWAS的当前和未来应用,并提出了一些建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c093/11688477/7fa7b32cda7f/fpls-15-1436532-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验