Suppr超能文献

一种促进电化学炔醇半氢化的共溶剂电解质

A Cosolvent Electrolyte Boosting Electrochemical Alkynol Semihydrogenation.

作者信息

Zhao Yuan, Wang Jia, Zha Xingzhou, Sheng Xuedi, Dong Lei, Wu Xin-Ping, Liu Zhen, Jiang Hongliang, Li Chunzhong

机构信息

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

J Am Chem Soc. 2025 Jan 15;147(2):1938-1947. doi: 10.1021/jacs.4c14773. Epub 2025 Jan 2.

Abstract

Green electricity-driven alkenol electrosynthesis via electrocatalytic alkynol semihydrogenation represents a sustainable route to conventional thermocatalysis. Both the electrocatalyst and electrolyte strongly impact the semihydrogenation performance. Despite significant progress in developing sophisticated electrocatalysts, a well-designed electrolyte in conjunction with industrial catalysts is an attractive strategy to advance the industrialization process of electrocatalytic alkynol semihydrogenation, but remains unexplored. Here, we develop a dimethyl sulfoxide (DMSO)-HO cosolvent electrolyte for electrocatalytic alkynol semihydrogenation. At an alkynol conversion of about 100%, the DMSO-HO electrolyte compared to the DMSO-free counterpart enables the alkenol selectivity on Cu catalysts to be promoted from 60-70% to over 90% at all measured current densities; meanwhile, the reaction rate is slightly decreased due to the inhibited water dissociation. Mechanistic studies reveal that the strong hydrogen-bond interactions between DMSO and HO suppress the dissociation of interfacial HO, leading to a decreased H* coverage at the electrode surface. The decreased H* coverage hinders the overhydrogenation of alkynols and favors the production of alkenols. Remarkably, the DMSO-induced enhancement of alkenol selectivity is applicable to a set of commercial catalysts and to the semihydrogenation of various alkynols. Eventually, a scaled-up 3 × 100 cm electrolyzer stack is established to achieve an alkynol conversion of ∼96% and an alkenol selectivity of ∼95% in the cosolvent electrolyte. This work not only presents an electrolyte strategy for boosting alkenol electrosynthesis, but also highlights the possibility of sustainable alkenol electro-production.

摘要

通过电催化炔醇半氢化实现绿色电力驱动的链烯醇电合成,是一种通往传统热催化的可持续途径。电催化剂和电解质都会对半氢化性能产生重大影响。尽管在开发先进的电催化剂方面取得了显著进展,但将精心设计的电解质与工业催化剂相结合,是推进电催化炔醇半氢化工业化进程的一个有吸引力的策略,但仍未得到探索。在此,我们开发了一种用于电催化炔醇半氢化的二甲基亚砜(DMSO)-HO共溶剂电解质。在炔醇转化率约为100%时,与无DMSO的对应物相比,DMSO-HO电解质能使铜催化剂上链烯醇的选择性在所有测量电流密度下从60 - 70%提高到90%以上;同时,由于水离解受到抑制,反应速率略有下降。机理研究表明,DMSO和HO之间强烈的氢键相互作用抑制了界面HO的离解,导致电极表面H覆盖度降低。H覆盖度的降低阻碍了炔醇的过度氢化,有利于链烯醇的生成。值得注意的是,DMSO诱导的链烯醇选择性增强适用于一组商业催化剂以及各种炔醇的半氢化。最终,建立了一个放大的3×100 cm电解槽堆,在共溶剂电解质中实现了约96%的炔醇转化率和约95%的链烯醇选择性。这项工作不仅提出了一种促进链烯醇电合成的电解质策略,还突出了可持续链烯醇电生产的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验