Kumar Nilesh, Samanta Bidita, Km Jyothsna, Raghunathan Varun, Sen Prosenjit, Bhat Ramray
Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
Small. 2025 Feb;21(6):e2405998. doi: 10.1002/smll.202405998. Epub 2025 Jan 2.
Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated. To study the problem, a histopathology-motivated, imaging-tractable, microfluidic multi-organ-on-chip platform is constructed, that seamlessly integrates a breast tumor-like compartment: invasive MDA-MB-231 in a 3D Collagen I scaffold, and a flow-implemented vascular channel: immortalized human aortic endothelia (TeloHAEC) on laminin-rich basement membrane (lrBM). The chip showcases the complexity of intravasation, wherein tumor cells and endothelia cooperate to form anastomotic structures, which facilitate cancer cell migration into the vascular channel. Upon entry, cancer cells adhere to and flow within the vascular channel. Exposure to methylglyoxal (MG), a dicarbonyl stressor associated with diabetic circulatory milieu increases cancer cell intravasation and adhesion through the vascular channel. This can be driven by MG-induced endothelial senescence and shedding, but also by the ability of MG to degrade lrBM and pathologically cross-link Collagen I, diminishing cell-ECM adhesion. Thus, dicarbonyl stress attenuates homeostatic barriers to cancer intravasation, exacerbating metastasis.
癌症转移涉及癌细胞从其原发器官病灶迁移至血管通道,随后扩散至潜在的定植部位。肿瘤细胞进入血管或内渗过程包括突破基质和内皮细胞外基质(ECM)以及内皮屏障。糖尿病和衰老中出现的慢性炎症应激如何影响这种突破的动力学仍未得到充分研究。为了研究这个问题,构建了一个基于组织病理学、具有成像可追踪性的微流控多器官芯片平台,该平台无缝集成了一个乳腺肿瘤样隔室:三维胶原蛋白I支架中的侵袭性MDA-MB-231细胞,以及一个有血流的血管通道:富含层粘连蛋白的基底膜(lrBM)上的永生化人主动脉内皮细胞(TeloHAEC)。该芯片展示了内渗的复杂性,其中肿瘤细胞和内皮细胞协同形成吻合结构,促进癌细胞迁移到血管通道。进入血管后,癌细胞附着在血管通道内并随血流流动。暴露于甲基乙二醛(MG),一种与糖尿病循环环境相关的二羰基应激源,会增加癌细胞的内渗和通过血管通道的黏附。这可能是由MG诱导的内皮细胞衰老和脱落驱动的,也可能是由MG降解lrBM和病理性交联胶原蛋白I的能力驱动的,从而减少细胞与ECM的黏附。因此,二羰基应激削弱了癌症内渗的稳态屏障,加剧了转移。