Suppr超能文献

深度学习盲对接方法可用于预测变构化合物吗?

Can Deep Learning Blind Docking Methods be Used to Predict Allosteric Compounds?

作者信息

Chen Eric A, Zhang Yingkai

机构信息

Department of Chemistry, New York University, New York, New York 10003, United States.

Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States.

出版信息

J Chem Inf Model. 2025 Apr 14;65(7):3737-3748. doi: 10.1021/acs.jcim.5c00331. Epub 2025 Apr 1.

Abstract

Allosteric compounds offer an alternative mode of inhibition to orthosteric compounds with opportunities for selectivity and noncompetition. Structure-based drug design (SBDD) of allosteric compounds introduces complications compared to their orthosteric counterparts; multiple binding sites of interest are considered, and often allosteric binding is only observed in particular protein conformations. Blind docking methods show potential in virtual screening allosteric ligands, and deep learning methods, such as DiffDock, achieve state-of-the-art performance on protein-ligand complex prediction benchmarks compared to traditional docking methods such as Vina and Lin_F9. To this aim, we explore the utility of a data-driven platform called the minimum distance matrix representation (MDMR) to retrospectively predict recently discovered allosteric inhibitors complexed with Cyclin-Dependent Kinase (CDK) 2. In contrast to other protein complex representations, it uses the minimum residue-residue (or residue-ligand) distance as a feature that prioritizes the formation of interactions. Analysis of this representation highlights the variety of protein conformations and ligand binding modes, and we identify an intermediate protein conformation that other heuristic-based kinase conformation classification methods do not distinguish. Next, we design self- and cross-docking benchmarks to assess whether docking methods can predict both orthosteric and allosteric binding modes and if prospective success is conditional on the selection of the protein receptor conformation, respectively. We find that a combined method, DiffDock followed by Lin_F9 Local Re-Docking (DiffDock + LRD), can predict both orthosteric and allosteric binding modes, and the intermediate conformation must be selected to predict the allosteric pose. In summary, this work highlights the value of a data-driven method to explore protein conformations and ligand binding modes and outlines the challenges of SBDD of allosteric compounds.

摘要

变构化合物提供了一种与正构化合物不同的抑制模式,具有选择性和非竞争性的机会。与正构化合物相比,基于结构的变构化合物药物设计(SBDD)引入了复杂性;需要考虑多个感兴趣的结合位点,并且变构结合通常仅在特定的蛋白质构象中观察到。盲对接方法在虚拟筛选变构配体方面显示出潜力,与传统对接方法(如Vina和Lin_F9)相比,深度学习方法(如DiffDock)在蛋白质-配体复合物预测基准测试中取得了领先性能。为此,我们探索了一种名为最小距离矩阵表示(MDMR)的数据驱动平台的效用,以回顾性预测最近发现的与细胞周期蛋白依赖性激酶(CDK)2复合的变构抑制剂。与其他蛋白质复合物表示方法不同,它使用最小的残基-残基(或残基-配体)距离作为优先考虑相互作用形成的特征。对这种表示的分析突出了蛋白质构象和配体结合模式的多样性,并且我们识别出一种其他基于启发式的激酶构象分类方法无法区分的中间蛋白质构象。接下来,我们设计了自对接和交叉对接基准测试,以分别评估对接方法是否可以预测正构和变构结合模式,以及前瞻性成功是否取决于蛋白质受体构象的选择。我们发现,一种组合方法,即先使用DiffDock然后进行Lin_F9局部重新对接(DiffDock + LRD),可以预测正构和变构结合模式,并且必须选择中间构象来预测变构构象。总之,这项工作突出了数据驱动方法在探索蛋白质构象和配体结合模式方面的价值,并概述了变构化合物SBDD的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc6/12004537/3e94842f6de6/ci5c00331_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验