Suppr超能文献

使用脑机接口恢复言语功能。

Restoring Speech Using Brain-Computer Interfaces.

作者信息

Stavisky Sergey D

机构信息

Department of Neurological Surgery, University of California, Davis, California, USA; email:

出版信息

Annu Rev Biomed Eng. 2025 May;27(1):29-54. doi: 10.1146/annurev-bioeng-110122-012818. Epub 2025 Jan 2.

Abstract

People who have lost the ability to speak due to neurological injuries would greatly benefit from assistive technology that provides a fast, intuitive, and naturalistic means of communication. This need can be met with brain-computer interfaces (BCIs): medical devices that bypass injured parts of the nervous system and directly transform neural activity into outputs such as text or sound. BCIs for restoring movement and typing have progressed rapidly in recent clinical trials; speech BCIs are the next frontier. This review covers the clinical need for speech BCIs, surveys foundational studies that point to where and how speech can be decoded in the brain, describes recent progress in both discrete and continuous speech decoding and closed-loop speech BCIs, provides metrics for assessing these systems' performance, and highlights key remaining challenges on the road toward clinically useful speech neuroprostheses.

摘要

因神经损伤而丧失语言能力的人将从提供快速、直观且自然的交流方式的辅助技术中受益匪浅。脑机接口(BCIs)可以满足这一需求:脑机接口是一种医疗设备,它绕过神经系统的受损部分,直接将神经活动转化为文本或声音等输出。用于恢复运动和打字的脑机接口在最近的临床试验中取得了迅速进展;语音脑机接口是下一个前沿领域。本综述涵盖了语音脑机接口的临床需求,调查了指向大脑中语音解码位置和方式的基础研究,描述了离散和连续语音解码以及闭环语音脑机接口方面的最新进展,提供了评估这些系统性能的指标,并强调了在迈向临床可用的语音神经假体道路上仍然存在的关键挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验