Suppr超能文献

游牧式纳米药物:由旁分泌转移效应实现的药物

Nomadic Nanomedicines: Medicines Enabled by the Paracrine Transfer Effect.

作者信息

Paranandi Krishna S, Amar-Lewis Eliz, Mirkin Chad A, Artzi Natalie

机构信息

International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.

Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.

出版信息

ACS Nano. 2025 Jan 14;19(1):21-30. doi: 10.1021/acsnano.4c15052. Epub 2025 Jan 2.

Abstract

In nanomedicine, the cellular export of nanomaterials has been less explored than uptake. Traditionally viewed in a negative light, recent findings highlight the potential of nanomedicine export to enhance therapeutic effects. This Perspective examines key pathways for export and how nanomaterial design affects removal rates. We present the idea of the "paracrine transfer effect" (PTE), where nanomaterials are first internalized by a "waypoint" cell and then exported to a "destination" cell, influencing both in potentially exploitable ways. Essential characteristics for nanomedicines to leverage the PTE are discussed, along with two case studies: STING-stimulating polymeric nanoparticles and TLR9-stimulating liposomal spherical nucleic acids. We propose future research directions to better understand and utilize the PTE in developing more effective nanomedicines.

摘要

在纳米医学中,纳米材料的细胞输出比摄取受到的研究较少。传统上对此持负面看法,但最近的研究结果凸显了纳米医学输出在增强治疗效果方面的潜力。本观点文章探讨了输出的关键途径以及纳米材料设计如何影响清除率。我们提出了“旁分泌转移效应”(PTE)的概念,即纳米材料首先被一个“中转”细胞内化,然后输出到一个“目标”细胞,以潜在的可利用方式影响这两个细胞。文中讨论了纳米药物利用PTE的基本特征,并给出了两个案例研究:刺激STING的聚合物纳米颗粒和刺激TLR9的脂质体球形核酸。我们提出了未来的研究方向,以便在开发更有效的纳米药物时更好地理解和利用PTE。

相似文献

1
Nomadic Nanomedicines: Medicines Enabled by the Paracrine Transfer Effect.
ACS Nano. 2025 Jan 14;19(1):21-30. doi: 10.1021/acsnano.4c15052. Epub 2025 Jan 2.
2
The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.
Acc Chem Res. 2019 Jun 18;52(6):1507-1518. doi: 10.1021/acs.accounts.9b00126. Epub 2019 May 31.
3
Albumin Nanoparticles Increase the Efficacy of Doxorubicin Hydrochloride Liposome Injection Based on Threshold Theory.
Mol Pharm. 2024 Jun 3;21(6):2970-2980. doi: 10.1021/acs.molpharmaceut.4c00097. Epub 2024 May 14.
4
Advancing Nanomedicine Through Electron Microscopy: Insights Into Nanoparticle Cellular Interactions and Biomedical Applications.
Int J Nanomedicine. 2025 Mar 8;20:2847-2878. doi: 10.2147/IJN.S500978. eCollection 2025.
5
Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
AAPS PharmSciTech. 2020 May 14;21(4):132. doi: 10.1208/s12249-020-01691-3.
6
Combining Nanomedicine and Immunotherapy.
Acc Chem Res. 2019 Jun 18;52(6):1543-1554. doi: 10.1021/acs.accounts.9b00148. Epub 2019 May 23.
7
Nanomedicines for Renal Management: From Imaging to Treatment.
Acc Chem Res. 2020 Sep 15;53(9):1869-1880. doi: 10.1021/acs.accounts.0c00323. Epub 2020 Aug 12.
9
Preclinical hazard evaluation strategy for nanomedicines.
Nanotoxicology. 2019 Feb;13(1):73-99. doi: 10.1080/17435390.2018.1505000. Epub 2018 Sep 5.
10
Evaluating Nanomedicines: Obstacles and Advancements.
Methods Mol Biol. 2018;1682:3-16. doi: 10.1007/978-1-4939-7352-1_1.

本文引用的文献

1
Stimulation of fracture mineralization by salt-inducible kinase inhibitors.
Front Bioeng Biotechnol. 2024 Sep 16;12:1450611. doi: 10.3389/fbioe.2024.1450611. eCollection 2024.
2
Elucidating siRNA Cellular Delivery Mechanism Mediated by Quaternized Starch Nanoparticles.
Small. 2024 Dec;20(51):e2405524. doi: 10.1002/smll.202405524. Epub 2024 Oct 2.
3
STING-Activating Polymer-Drug Conjugates for Cancer Immunotherapy.
ACS Cent Sci. 2024 Aug 20;10(9):1765-1781. doi: 10.1021/acscentsci.4c00579. eCollection 2024 Sep 25.
5
Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions.
ACS Nano. 2024 Jun 4;18(22):13983-13999. doi: 10.1021/acsnano.4c00182. Epub 2024 May 20.
6
Matrix Metalloproteinase- and pH-Sensitive Nanoparticle System Enhances Drug Retention and Penetration in Glioblastoma.
ACS Nano. 2024 Jun 4;18(22):14145-14160. doi: 10.1021/acsnano.3c03409. Epub 2024 May 18.
7
Cellular Export Fate of Liposomal Spherical Nucleic Acids.
ACS Nano. 2023 Oct 10;17(19):19000-19010. doi: 10.1021/acsnano.3c04608. Epub 2023 Sep 22.
8
Investigation of the enhanced antitumour potency of STING agonist after conjugation to polymer nanoparticles.
Nat Nanotechnol. 2023 Nov;18(11):1351-1363. doi: 10.1038/s41565-023-01447-7. Epub 2023 Jul 13.
9
Nanoparticles Hitchhike on Monocytes for Glioblastoma Treatment after Low-Dose Radiotherapy.
ACS Nano. 2023 Jul 25;17(14):13333-13347. doi: 10.1021/acsnano.3c01428. Epub 2023 Jul 5.
10
Engineering kinetics of TLR7/8 agonist release from bottlebrush prodrugs enables tumor-focused immune stimulation.
Sci Adv. 2023 Apr 21;9(16):eadg2239. doi: 10.1126/sciadv.adg2239. Epub 2023 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验