Suppr超能文献

DMNAG:基于邻域聚合图Transformer的疾病-代谢物关联预测

DMNAG: Prediction of disease-metabolite associations based on Neighborhood Aggregation Graph Transformer.

作者信息

Lu Pengli, Gao Jiajie, Liu Wenzhi

机构信息

School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China.

出版信息

Comput Biol Chem. 2025 Apr;115:108320. doi: 10.1016/j.compbiolchem.2024.108320. Epub 2024 Dec 28.

Abstract

The metabolic level within an organism typically reflects its health status. Studying the relationship between human diseases and metabolites helps enhance medical professionals' ability for early disease diagnosis and risk prediction. However, traditional biological experimental methods often require substantial resources and manpower, and there is still room for improvement in the performance of existing predictive models. To tackle these, we propose a novel method based on the Neighborhood Aggregation Graph Transformer (NAGphormer) to predict potential associations between diseases and metabolites (DMNAG), aiming to provide guidance for biological experiments and improve experimental efficiency. First, we calculated the Gaussian kernel similarity of diseases and the physicochemical similarity of metabolites, and combined them with known associations to construct a bipartite heterogeneous network. We then calculated the semantic similarity of diseases and the Mol2vec similarity of metabolites, using them respectively as the similarity feature vectors for the disease nodes and metabolite nodes. Meanwhile, we calculate the positional information features of nodes and combine them with similarity features as the initial features of the nodes. Next, we input the bipartite heterogeneous network and node initial features into the Hop2Token module to capture multihop neighborhood information between nodes. Finally, we input the multi-hop features of nodes into the Transformer model for training and obtain the edge prediction probabilities through the decoder. Through experiments, our model achieved an AUC value of 0.9801 and an AUPR value of 0.9818 in five-fold cross-validation. In case studies, most DMNAG-predicted associations have been validated, showcasing the model's reliability and superiority.

摘要

生物体内部的代谢水平通常反映其健康状况。研究人类疾病与代谢物之间的关系有助于提高医学专业人员早期疾病诊断和风险预测的能力。然而,传统的生物学实验方法往往需要大量资源和人力,并且现有预测模型的性能仍有提升空间。为了解决这些问题,我们提出了一种基于邻域聚合图Transformer(NAGphormer)的新方法来预测疾病与代谢物之间的潜在关联(DMNAG),旨在为生物学实验提供指导并提高实验效率。首先,我们计算了疾病的高斯核相似度和代谢物的物理化学相似度,并将它们与已知关联相结合来构建一个二分异构网络。然后,我们计算了疾病的语义相似度和代谢物的Mol2vec相似度,分别将它们用作疾病节点和代谢物节点的相似度特征向量。同时,我们计算节点的位置信息特征,并将其与相似度特征相结合作为节点的初始特征。接下来,我们将二分异构网络和节点初始特征输入到Hop2Token模块中以捕获节点之间的多跳邻域信息。最后,我们将节点的多跳特征输入到Transformer模型中进行训练,并通过解码器获得边预测概率。通过实验,我们的模型在五折交叉验证中实现了0.9801的AUC值和0.9818的AUPR值。在案例研究中,大多数DMNAG预测的关联都得到了验证,展示了该模型的可靠性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验