de Oliveira Neto João G, Bezerra Raychiman D S, Domingos Francisco N B, Lima Antonio D S G, Souto Eliana B, Lage Mateus R, da Silva Luzeli M, Dos Santos Adenilson O
Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil.
UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland.
Int J Pharm. 2025 Feb 10;670:125159. doi: 10.1016/j.ijpharm.2024.125159. Epub 2024 Dec 31.
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized. Density functional theory (DFT) calculations were performed to analyze the interactions between ETH and MND in the heterodimer. These results contributed to the suitable assignment of infrared (IR) vibrational modes, to determine the chemical reactivity descriptors and the electronic indices of each component of the molecule. Additionally, Hirshfeld surfaces analysis and calculations of absorption, distribution, metabolism, and excretion (ADME) parameters were performed to examine intermolecular interactions and predict the in silico pharmacokinetic profile of the ETH-MND compound and its forming molecules. Powder X-ray diffraction data confirmed the formation of a coamorphous binary system in the 1:2 and 1:3 ETH and MND ratios. Furthermore, the ETH-MND (1:3) solid dispersion remained amorphous for up to 150 days when stored at 38 °C and 75 % relative humidity. DFT calculations, conducted both in vacuum and in ethanol, indicated that the formation of the coamorphous system is driven by hydrogen bonding between the NH groups of ETH and the C=O group of MND. Thermodynamic analysis showed that intermolecular interactions are favored in the gas phase, with Gibbs free energy of -3.20 kcal/mol. The IR spectra showed a correlation between experimental and calculated data. Thermal analyses revealed glass transition temperatures of 59 °C (1:2 ratio) and 61 °C (1:3 ratio), indicating thermal stability of the coamorphous materials. Additionally, dissolution tests showed a 3.58-fold increase in the solubility of ETH compared to its crystalline form. The encapsulation of ETH-MND coamorphous systems in sodium alginate spheres via polyelectrolyte complexation was also investigated, demonstrating significant controlled drug release over 480 min.
本研究报告了一种由乙硫异烟胺(ETH)和扁桃酸(MND)作为共形成剂组成的新型共无定形体系的合成及其实验-理论表征。采用缓慢溶剂蒸发法在乙醇介质中合成了固体分散体。对该体系的结构、振动和热性质进行了表征。进行密度泛函理论(DFT)计算以分析异二聚体中ETH和MND之间的相互作用。这些结果有助于对红外(IR)振动模式进行合适的归属,确定分子各组分的化学反应性描述符和电子指数。此外,进行了Hirshfeld表面分析以及吸收、分布、代谢和排泄(ADME)参数计算,以研究分子间相互作用并预测ETH-MND化合物及其形成分子的计算机模拟药代动力学特征。粉末X射线衍射数据证实了在ETH与MND比例为1:2和1:3时形成了共无定形二元体系。此外,ETH-MND(1:3)固体分散体在38°C和75%相对湿度下储存长达150天时仍保持无定形。在真空和乙醇中进行的DFT计算表明,共无定形体系的形成是由ETH的NH基团与MND的C=O基团之间的氢键驱动的。热力学分析表明,分子间相互作用在气相中更有利,吉布斯自由能为-3.20 kcal/mol。红外光谱显示了实验数据与计算数据之间的相关性。热分析揭示了玻璃化转变温度分别为59°C(1:2比例)和61°C(1:3比例),表明共无定形材料具有热稳定性。此外,溶出试验表明,ETH的溶解度与其结晶形式相比增加了3.58倍。还研究了通过聚电解质络合将ETH-MND共无定形体系包封在海藻酸钠球中的情况,结果表明在480分钟内实现了显著的控释。