Ziegler John, Hechtman Jaclyn F, Rana Satshil, Ptashkin Ryan N, Jayakumaran Gowtham, Middha Sumit, Chavan Shweta S, Vanderbilt Chad, DeLair Deborah, Casanova Jacklyn, Shia Jinru, DeGroat Nicole, Benayed Ryma, Ladanyi Marc, Berger Michael F, Fuchs Thomas J, Brannon A Rose, Zehir Ahmet
Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
MongoDB, New York, NY, USA.
Nat Commun. 2025 Jan 2;16(1):136. doi: 10.1038/s41467-024-54970-z.
Microsatellite instability (MSI) is a critical phenotype of cancer genomes and an FDA-recognized biomarker that can guide treatment with immune checkpoint inhibitors. Previous work has demonstrated that next-generation sequencing data can be used to identify samples with MSI-high phenotype. However, low tumor purity, as frequently observed in routine clinical samples, poses a challenge to the sensitivity of existing algorithms. To overcome this critical issue, we developed MiMSI, an MSI classifier based on deep neural networks and trained using a dataset that included low tumor purity MSI cases in a multiple instance learning framework. On a challenging yet representative set of cases, MiMSI showed higher sensitivity (0.895) and auROC (0.971) than MSISensor (sensitivity: 0.67; auROC: 0.907), an open-source software previously validated for clinical use at our institution using MSK-IMPACT large panel targeted NGS data. In a separate, prospective cohort, MiMSI confirmed that it outperforms MSISensor in low purity cases (P = 8.244e-07).
微卫星不稳定性(MSI)是癌症基因组的一种关键表型,也是一种获美国食品药品监督管理局认可的生物标志物,可指导免疫检查点抑制剂的治疗。先前的研究表明,下一代测序数据可用于识别具有高微卫星不稳定性表型的样本。然而,在常规临床样本中经常观察到的低肿瘤纯度,对现有算法的敏感性构成了挑战。为克服这一关键问题,我们开发了MiMSI,这是一种基于深度神经网络的微卫星不稳定性分类器,并使用一个在多实例学习框架中包含低肿瘤纯度微卫星不稳定性病例的数据集进行训练。在一组具有挑战性但具有代表性的病例中,MiMSI表现出比MSISensor更高的敏感性(0.895)和曲线下面积(0.971)(MSISensor的敏感性为0.67,曲线下面积为0.907),MSISensor是一款先前在我们机构使用MSK-IMPACT大panel靶向NGS数据进行临床验证的开源软件。在一个独立的前瞻性队列中,MiMSI证实其在低纯度病例中优于MSISensor(P = 8.244e-07)。