Dong Erqian, Zhang Tianye, Zhang Jinhu, Su Xiaochun, Qu Sichao, Ye Xin, Gao Zhanyuan, Gao Chengtian, Hui Jiangang, Wang Zhanxiang, Fang Nicholas X, Zhang Yu
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China.
Nat Commun. 2025 Jan 2;16(1):308. doi: 10.1038/s41467-024-55022-2.
Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers. Through the application of effective-medium theory, we determined the refractive index of micro-tungsten particles in silicone elastomer, closely aligning with experimental findings. The soft metalens allows for transmission across broadband frequencies (50 kHz to 0.4 MHz) through 3D-printed human skull models mimicking aberration layers. In ex vivo transcranial ultrasound tests, we observed a 9.3 dB intensity enhancement at the focal point compared to results obtained using an unfocused transducer. By integrating soft materials, metamaterials, and gradient refractive index, the soft metalens presents future opportunities for advancing next-generation soft devices in deep-brain stimulation, non-destructive evaluation, and high-resolution ultrasound imaging.
像差层(AL)在微波工程、电磁波和医学超声中常常构成显著的能量传输障碍。然而,利用金属和弹性体等传统材料,通过像人类头骨这样的像差层实现宽带超声聚焦已被证明具有挑战性。在本研究中,我们引入了一种采用可调谐软超表面的反相编码方法,以穿透异质像差层。通过应用有效介质理论,我们确定了硅橡胶弹性体中微钨颗粒的折射率,这与实验结果密切吻合。这种软超表面能够通过模拟像差层的3D打印人类头骨模型在宽带频率(50 kHz至0.4 MHz)范围内实现透射。在离体经颅超声测试中,与使用未聚焦换能器获得的结果相比,我们观察到焦点处的强度增强了9.3 dB。通过整合软材料、超材料和梯度折射率,这种软超表面为推进下一代用于深部脑刺激、无损评估和高分辨率超声成像的软设备提供了未来机遇。