Wild Romina, Wodaczek Felix, Del Tatto Vittorio, Cheng Bingqing, Laio Alessandro
International School for Advanced Studies (SISSA), Trieste, Italy.
The Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Nat Commun. 2025 Jan 2;16(1):270. doi: 10.1038/s41467-024-55449-7.
Feature selection is essential in the analysis of molecular systems and many other fields, but several uncertainties remain: What is the optimal number of features for a simplified, interpretable model that retains essential information? How should features with different units be aligned, and how should their relative importance be weighted? Here, we introduce the Differentiable Information Imbalance (DII), an automated method to rank information content between sets of features. Using distances in a ground truth feature space, DII identifies a low-dimensional subset of features that best preserves these relationships. Each feature is scaled by a weight, which is optimized by minimizing the DII through gradient descent. This allows simultaneously performing unit alignment and relative importance scaling, while preserving interpretability. DII can also produce sparse solutions and determine the optimal size of the reduced feature space. We demonstrate the usefulness of this approach on two benchmark molecular problems: (1) identifying collective variables that describe conformations of a biomolecule, and (2) selecting features for training a machine-learning force field. These results show the potential of DII in addressing feature selection challenges and optimizing dimensionality in various applications. The method is available in the Python library DADApy.
特征选择在分子系统分析及许多其他领域中至关重要,但仍存在一些不确定性:对于一个保留基本信息的简化、可解释模型而言,最佳特征数量是多少?具有不同单位的特征应如何对齐,其相对重要性又应如何加权?在此,我们引入了可微信息不平衡(DII),这是一种对特征集之间的信息内容进行排序的自动化方法。利用真实特征空间中的距离,DII识别出能最佳保留这些关系的低维特征子集。每个特征都由一个权重进行缩放,该权重通过梯度下降最小化DII来进行优化。这使得在保留可解释性的同时,能够同时进行单位对齐和相对重要性缩放。DII还可以产生稀疏解并确定降维特征空间的最佳大小。我们在两个基准分子问题上展示了这种方法的实用性:(1)识别描述生物分子构象的集体变量,以及(2)选择用于训练机器学习力场的特征。这些结果表明DII在应对特征选择挑战和优化各种应用中的维度方面具有潜力。该方法可在Python库DADApy中获取。