From the Department of Radiology, University Hospital, LMU Munich, Munich, Germany (A.T.S., B.S., T.W., A.M., O.O., M.S., J.R., M.I.); Department of Statistics, LMU Munich, Munich, Germany (A.T.S., S.C., D.R., A.B., B.B.); and Munich Center for Machine Learning, Munich, Germany (A.T.S., T.W., D.R., A.B. B.B., M.I.).
Invest Radiol. 2023 Dec 1;58(12):874-881. doi: 10.1097/RLI.0000000000001009. Epub 2023 Jul 28.
Optimizing a machine learning (ML) pipeline for radiomics analysis involves numerous choices in data set composition, preprocessing, and model selection. Objective identification of the optimal setup is complicated by correlated features, interdependency structures, and a multitude of available ML algorithms. Therefore, we present a radiomics-based benchmarking framework to optimize a comprehensive ML pipeline for the prediction of overall survival. This study is conducted on an image set of patients with hepatic metastases of colorectal cancer, for which radiomics features of the whole liver and of metastases from computed tomography images were calculated. A mixed model approach was used to find the optimal pipeline configuration and to identify the added prognostic value of radiomics features.
In this study, a large-scale ML benchmark pipeline consisting of preprocessing, feature selection, dimensionality reduction, hyperparameter optimization, and training of different models was developed for radiomics-based survival analysis. Portal-venous computed tomography imaging data from a previous prospective randomized trial evaluating radioembolization of liver metastases of colorectal cancer were quantitatively accessible through a radiomics approach. One thousand two hundred eighteen radiomics features of hepatic metastases and the whole liver were calculated, and 19 clinical parameters (age, sex, laboratory values, and treatment) were available for each patient. Three ML algorithms-a regression model with elastic net regularization (glmnet), a random survival forest (RSF), and a gradient tree-boosting technique (xgboost)-were evaluated for 5 combinations of clinical data, tumor radiomics, and whole-liver features. Hyperparameter optimization and model evaluation were optimized toward the performance metric integrated Brier score via nested cross-validation. To address dependency structures in the benchmark setup, a mixed-model approach was developed to compare ML and data configurations and to identify the best-performing model.
Within our radiomics-based benchmark experiment, 60 ML pipeline variations were evaluated on clinical data and radiomics features from 491 patients. Descriptive analysis of the benchmark results showed a preference for RSF-based pipelines, especially for the combination of clinical data with radiomics features. This observation was supported by the quantitative analysis via a linear mixed model approach, computed to differentiate the effect of data sets and pipeline configurations on the resulting performance. This revealed the RSF pipelines to consistently perform similar or better than glmnet and xgboost. Further, for the RSF, there was no significantly better-performing pipeline composition regarding the sort of preprocessing or hyperparameter optimization.
Our study introduces a benchmark framework for radiomics-based survival analysis, aimed at identifying the optimal settings with respect to different radiomics data sources and various ML pipeline variations, including preprocessing techniques and learning algorithms. A suitable analysis tool for the benchmark results is provided via a mixed model approach, which showed for our study on patients with intrahepatic liver metastases, that radiomics features captured the patients' clinical situation in a manner comparable to the provided information solely from clinical parameters. However, we did not observe a relevant additional prognostic value obtained by these radiomics features.
为了优化放射组学分析的机器学习(ML)管道,需要在数据集构成、预处理和模型选择方面做出众多选择。由于相关特征、相互依赖结构以及众多可用的 ML 算法,客观确定最佳设置变得复杂。因此,我们提出了一个基于放射组学的基准框架,以优化用于预测总生存期的全面 ML 管道。本研究是在结直肠癌肝转移患者的图像集上进行的,计算了 CT 图像中整个肝脏和转移灶的放射组学特征。采用混合模型方法找到最佳的管道配置,并确定放射组学特征的附加预后价值。
在这项研究中,我们开发了一个大规模的 ML 基准管道,该管道由预处理、特征选择、降维、超参数优化和不同模型的训练组成,用于基于放射组学的生存分析。通过放射组学方法可以定量访问先前前瞻性随机试验中评估结直肠癌肝转移的放射性栓塞治疗的门静脉 CT 成像数据。为每位患者计算了 1218 个肝转移和整个肝脏的放射组学特征,并提供了 19 个临床参数(年龄、性别、实验室值和治疗)。评估了 3 种 ML 算法 - 具有弹性网正则化(glmnet)的回归模型、随机生存森林(RSF)和梯度提升树技术(xgboost) - 用于 5 种临床数据、肿瘤放射组学和全肝特征的组合。通过嵌套交叉验证,针对集成 Brier 分数的性能指标对超参数优化和模型评估进行了优化。为了解决基准设置中的依赖结构问题,我们开发了一种混合模型方法来比较 ML 和数据配置,并确定性能最佳的模型。
在我们基于放射组学的基准实验中,在 491 名患者的临床数据和放射组学特征上评估了 60 个 ML 管道变体。基准结果的描述性分析表明,基于 RSF 的管道偏好,特别是临床数据与放射组学特征的组合。通过计算线性混合模型方法来区分数据集和管道配置对结果性能的影响,支持了这一观察结果。这表明 RSF 管道的性能始终与 glmnet 和 xgboost 相似或更好。此外,对于 RSF,在预处理或超参数优化方面,没有表现出性能更好的管道组成。
我们的研究引入了一个基于放射组学的生存分析基准框架,旨在确定不同放射组学数据源和各种 ML 管道变体的最佳设置,包括预处理技术和学习算法。通过混合模型方法为基准结果提供了合适的分析工具,该方法在我们对肝内肝转移患者的研究中表明,放射组学特征以与仅提供临床参数相似的方式捕获了患者的临床情况。然而,我们没有观察到这些放射组学特征获得的相关额外预后价值。