Meisner Jonas, Benros Michael Eriksen, Rasmussen Simon
Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Hellerup, Denmark.
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
Nat Commun. 2025 Jan 2;16(1):126. doi: 10.1038/s41467-024-55477-3.
Polygenic prediction has yet to make a major clinical breakthrough in precision medicine and psychiatry, where the application of polygenic risk scores is expected to improve clinical decision-making. Most widely used approaches for estimating polygenic risk scores are based on summary statistics from external large-scale genome-wide association studies, which rely on assumptions of matching data distributions. This may hinder the impact of polygenic risk scores in modern diverse populations due to small differences in genetic architectures. Reference-free estimators of polygenic scores are instead based on genomic best linear unbiased predictions and model the population of interest directly. We introduce a framework, named hapla, with a novel algorithm for clustering haplotypes in phased genotype data to estimate heritability and perform reference-free polygenic prediction in complex traits. We utilize inferred haplotype clusters to compute accurate heritability estimates and polygenic scores in a simulation study and the iPSYCH2012 case-cohort for depression disorders and schizophrenia. We demonstrate that our haplotype-based approach robustly outperforms standard genotype-based approaches, which can help pave the way for polygenic risk scores in the future of precision medicine and psychiatry.
多基因预测尚未在精准医学和精神病学领域取得重大临床突破,而多基因风险评分的应用有望改善临床决策。估计多基因风险评分最广泛使用的方法是基于外部大规模全基因组关联研究的汇总统计数据,这些研究依赖于匹配数据分布的假设。由于遗传结构的微小差异,这可能会阻碍多基因风险评分在现代多样化人群中的影响。相反,多基因评分的无参考估计器基于基因组最佳线性无偏预测,并直接对感兴趣的人群进行建模。我们引入了一个名为hapla的框架,该框架具有一种新颖的算法,用于对分阶段基因型数据中的单倍型进行聚类,以估计遗传力并在复杂性状中进行无参考多基因预测。我们利用推断的单倍型聚类在模拟研究以及针对抑郁症和精神分裂症的iPSYCH2012病例队列中计算准确的遗传力估计值和多基因评分。我们证明,我们基于单倍型的方法稳健地优于基于标准基因型的方法,这有助于为精准医学和精神病学未来的多基因风险评分铺平道路。