Suppr超能文献

基于多硫的发动蛋白相关蛋白1的扩充可防止小鼠缺血性硫化物分解代谢和心力衰竭。

Polysulfur-based bulking of dynamin-related protein 1 prevents ischemic sulfide catabolism and heart failure in mice.

作者信息

Nishimura Akiyuki, Ogata Seiryo, Tang Xiaokang, Hengphasatporn Kowit, Umezawa Keitaro, Sanbo Makoto, Hirabayashi Masumi, Kato Yuri, Ibuki Yuko, Kumagai Yoshito, Kobayashi Kenta, Kanda Yasunari, Urano Yasuteru, Shigeta Yasuteru, Akaike Takaaki, Nishida Motohiro

机构信息

National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, Japan.

Exploratory Research Center on Life and Living Systems, NINS, Okazaki, Japan.

出版信息

Nat Commun. 2025 Jan 2;16(1):276. doi: 10.1038/s41467-024-55661-5.

Abstract

The presence of redox-active molecules containing catenated sulfur atoms (supersulfides) in living organisms has led to a review of the concepts of redox biology and its translational strategy. Glutathione (GSH) is the body's primary detoxifier and antioxidant, and its oxidized form (GSSG) has been considered as a marker of oxidative status. However, we report that GSSG, but not reduced GSH, prevents ischemic supersulfide catabolism-associated heart failure in male mice by electrophilic modification of dynamin-related protein (Drp1). In healthy exercised hearts, the redox-sensitive Cys644 of Drp1 is highly S-glutathionylated. Nearly 40% of Cys644 is normally polysulfidated, which is a preferential target for GSSG-mediated S-glutathionylation. Cys644 S-glutathionylation is resistant to Drp1 depolysulfidation-dependent mitochondrial hyperfission and myocardial dysfunction caused by hypoxic stress. MD simulation of Drp1 structure and site-directed mutagenetic analysis reveal a functional interaction between Cys644 and a critical phosphorylation site Ser637, through Glu640. Bulky modification at Cys644 via polysulfidation or S-glutathionylation reduces Drp1 activity by disrupting Ser637-Glu640-Cys644 interaction. Disruption of Cys644 S-glutathionylation nullifies the cardioprotective effect of GSSG against heart failure after myocardial infarction. Our findings suggest a therapeutic potential of supersulfide-based Cys bulking on Drp1 for ischemic heart disease.

摘要

生物体中含连环硫原子的氧化还原活性分子(超硫化物)的存在促使人们对氧化还原生物学概念及其转化策略进行重新审视。谷胱甘肽(GSH)是人体主要的解毒剂和抗氧化剂,其氧化形式(GSSG)被视为氧化状态的标志物。然而,我们报告称,GSSG而非还原型GSH可通过对发动蛋白相关蛋白(Drp1)进行亲电修饰来预防雄性小鼠缺血性超硫化物分解代谢相关的心力衰竭。在健康的运动心脏中,Drp1的氧化还原敏感型半胱氨酸644高度谷胱甘肽化。正常情况下,近40%的半胱氨酸644会多硫化,这是GSSG介导的谷胱甘肽化的优先靶点。半胱氨酸644谷胱甘肽化可抵抗由缺氧应激引起的Drp1去多硫化依赖性线粒体过度分裂和心肌功能障碍。Drp1结构的分子动力学模拟和定点诱变分析揭示了半胱氨酸644与关键磷酸化位点丝氨酸637之间通过谷氨酸640发生的功能相互作用。通过多硫化或谷胱甘肽化对半胱氨酸644进行大量修饰会破坏丝氨酸637 - 谷氨酸640 - 半胱氨酸644相互作用,从而降低Drp1活性。破坏半胱氨酸644谷胱甘肽化会使GSSG对心肌梗死后心力衰竭的心脏保护作用失效。我们的研究结果表明,基于超硫化物的半胱氨酸对Drp1进行修饰在缺血性心脏病治疗方面具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4d/11695708/639c34c29c40/41467_2024_55661_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验