Suppr超能文献

用于帕金森病患者早期检测和严重程度分类的机器学习

Machine learning for early detection and severity classification in people with Parkinson's disease.

作者信息

Hwang Juseon, Youm Changhong, Park Hwayoung, Kim Bohyun, Choi Hyejin, Cheon Sang-Myung

机构信息

Department of Health Sciences, The Graduate School of Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.

Biomechanics Laboratory, Dong-A University, Saha-gu, Busan, Republic of Korea.

出版信息

Sci Rep. 2025 Jan 2;15(1):234. doi: 10.1038/s41598-024-83975-3.

Abstract

Early detection of Parkinson's disease (PD) and accurate assessment of disease progression are critical for optimizing treatment and rehabilitation. However, there is no consensus on how to effectively detect early-stage PD and classify motor symptom severity using gait analysis. This study evaluated the accuracy of machine learning models in classifying early and moderate-stages of PD based on spatiotemporal gait features at different walking speeds. A total of 178 participants were recruited, including 103 individuals with PD (61 early-stage, 42 moderate-stage) and 75 healthy controls. Participants performed a walking test on a 24-m walkway at three speeds: preferred walking speed (PWS), 20% faster (HWS), and 20% slower (LWS). Key features-walking speed at PWS, stride length at HWS, and the coefficient of variation (CV) of the stride length at LWS-achieved a classification accuracy of 78.1% using the random forest algorithm. For early PD detection, the stride length at HWS and CV of the stride length at LWS provided an accuracy of 67.3% with Naïve Bayes. Walking at PWS was the most critical feature for distinguishing early from moderate PD, with an accuracy of 69.8%. These findings suggest that assessing gait over consecutive steps under different speed conditions may improve the early detection and severity assessment of individuals with PD.

摘要

帕金森病(PD)的早期检测以及对疾病进展的准确评估对于优化治疗和康复至关重要。然而,关于如何利用步态分析有效检测早期PD以及对运动症状严重程度进行分类,目前尚无共识。本研究评估了基于不同步行速度下的时空步态特征,机器学习模型对PD早期和中期进行分类的准确性。共招募了178名参与者,包括103名PD患者(61名早期患者,42名中期患者)和75名健康对照者。参与者在一条24米长的通道上以三种速度进行步行测试:首选步行速度(PWS)、快20%(HWS)和慢20%(LWS)。关键特征——PWS时的步行速度、HWS时的步长以及LWS时步长的变异系数(CV)——使用随机森林算法实现了78.1%的分类准确率。对于早期PD检测,HWS时的步长和LWS时步长的CV使用朴素贝叶斯算法的准确率为67.3%。在PWS下行走是区分早期和中期PD的最关键特征,准确率为69.8%。这些发现表明,在不同速度条件下评估连续步态可能会改善PD患者的早期检测和严重程度评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da11/11695740/df46cbe7d7bb/41598_2024_83975_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验