School of Information EngineeringGuangdong University of Technology Guangzhou 510000 China.
Department of NeurologyFujian Medical University Union Hospital Fuzhou 350001 China.
IEEE J Transl Eng Health Med. 2022 Jun 8;10:2200111. doi: 10.1109/JTEHM.2022.3180933. eCollection 2022.
To develop an objective and efficient method to automatically identify Parkinson's disease (PD) and healthy control (HC).
We design a novel model based on residual network (ResNet) architecture, named PD-ResNet, to learn the gait differences between PD and HC and between PD with different severity levels. Specifically, a polynomial elevated dimensions technique is applied to increase the dimensions of the input gait features; then, the processed data is transformed into a 3-dimensional picture as the input of PD-ResNet. The synthetic minority over-sampling technique (SMOTE), data augmentation, and early stopping technologies are adopted to improve the generalization ability. To further enhance the classification performance, a new loss function, named improved focal loss function, is developed to focus on the train of PD-ResNet on the hard samples and to discard the abnormal samples.
The experiments on the clinical gait dataset show that our proposed model achieves excellent performance with an accuracy of 95.51%, a precision of 94.44%, a recall of 96.59%, a specificity of 94.44%, and an F1-score of 95.50%. Moreover, the accuracy, precision, recall, specificity, and F1-score for the classification of early PD and HC are 92.03%, 94.20%, 90.28%, 93.94%, and 92.20%, respectively. Furthermore, the accuracy, precision, recall, specificity, and F1-score for the classification of PD with different severity levels are 92.03%, 94.29%, 90.41%, 93.85%, and 92.31%, respectively.
Our proposed method shows better performance than the traditional machine learning and deep learning methods.
The experimental results show that the proposed method is clinically meaningful for the objective assessment of gait motor impairment for PD patients.
开发一种客观、高效的方法,自动识别帕金森病(PD)和健康对照(HC)。
我们设计了一种基于残差网络(ResNet)架构的新型模型,命名为 PD-ResNet,用于学习 PD 和 HC 以及不同严重程度的 PD 之间的步态差异。具体来说,应用多项式提升维度技术增加输入步态特征的维度;然后,将处理后的数据转换为 3 维图像作为 PD-ResNet 的输入。采用合成少数过采样技术(SMOTE)、数据增强和提前停止技术来提高泛化能力。为了进一步提高分类性能,开发了新的损失函数,称为改进的焦点损失函数,以关注 PD-ResNet 的训练集中的困难样本,并丢弃异常样本。
在临床步态数据集上的实验表明,我们提出的模型具有出色的性能,准确率为 95.51%,精密度为 94.44%,召回率为 96.59%,特异性为 94.44%,F1 得分为 95.50%。此外,早期 PD 和 HC 的分类准确率、精密度、召回率、特异性和 F1 得分分别为 92.03%、94.20%、90.28%、93.94%和 92.20%。此外,不同严重程度 PD 的分类准确率、精密度、召回率、特异性和 F1 得分分别为 92.03%、94.29%、90.41%、93.85%和 92.31%。
与传统的机器学习和深度学习方法相比,我们提出的方法具有更好的性能。
实验结果表明,该方法对 PD 患者步态运动障碍的客观评估具有临床意义。