Wang Chen, Deng Chaoyuan, Zhai Panlong, Shi Xiaoran, Liu Wei, Jin Dingfeng, Shang Bing, Gao Junfeng, Sun Licheng, Hou Jungang
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, China.
Nat Commun. 2025 Jan 2;16(1):215. doi: 10.1038/s41467-024-55688-8.
Regulating the spintronic structure of electrocatalysts can improve the oxygen evolution reaction performance efficiently. Nonetheless, the effects of tuning the spintronic structure for the oxygen evolution reaction mechanisms have rarely been discussed. Here, we show a ruthenium-cobalt-tin oxide with optimized spintronic structure due to the quantum spin interaction of Ru and Co. The specific spintronic structure of ruthenium-cobalt-tin oxide promotes the charge transfer kinetics and intermediates evolution behavior under applied potential, generating long-lived active species with higher spin density sites for the oxygen evolution reaction after the reconstruction process. Moreover, the ruthenium-cobalt-tin oxide possesses decoupled proton-electron transfer procedure during the oxygen evolution reaction process, demonstrating that the electron transfer procedure of O-O bond formation between *O intermediate and lattice oxygen in Co-O-Ru is the rate-determining step of the oxygen evolution reaction process. This work provides rational perspectives on the correlation between spintronic structure and oxygen evolution reaction mechanism.
调控电催化剂的自旋电子结构能够有效提高析氧反应性能。然而,针对析氧反应机理调节自旋电子结构的影响却鲜有讨论。在此,我们展示了一种由于Ru和Co的量子自旋相互作用而具有优化自旋电子结构的钌钴锡氧化物。钌钴锡氧化物独特的自旋电子结构促进了外加电势下的电荷转移动力学和中间体演化行为,在重构过程后产生具有更高自旋密度位点的长寿命活性物种用于析氧反应。此外,钌钴锡氧化物在析氧反应过程中具有解耦的质子-电子转移过程,这表明Co-O-Ru中*O中间体与晶格氧之间O-O键形成的电子转移过程是析氧反应过程的速率决定步骤。这项工作为自旋电子结构与析氧反应机理之间的相关性提供了合理的见解。