Suppr超能文献

调控氮化物/氢氧化物的电子态以在大电流密度下加速析氧动力学。

Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density.

机构信息

State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.

State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China.

出版信息

Nat Commun. 2023 Apr 4;14(1):1873. doi: 10.1038/s41467-023-37091-x.

Abstract

Rational design efficient transition metal-based electrocatalysts for oxygen evolution reaction (OER) is critical for water splitting. However, industrial water-alkali electrolysis requires large current densities at low overpotentials, always limited by intrinsic activity. Herein, we report hierarchical bimetal nitride/hydroxide (NiMoN/NiFe LDH) array as model catalyst, regulating the electronic states and tracking the relationship of structure-activity. As-activated NiMoN/NiFe LDH exhibits the industrially required current density of 1000 mA cm at overpotential of 266 mV with 250 h stability for OER. Especially, in-situ electrochemical spectroscopic reveals that heterointerface facilitates dynamic structure evolution to optimize electronic structure. Operando electrochemical impedance spectroscopy implies accelerated OER kinetics and intermediate evolution due to fast charge transport. The OER mechanism is revealed by the combination of theoretical and experimental studies, indicating as-activated NiMoN/NiFe LDH follows lattice oxygen oxidation mechanism with accelerated kinetics. This work paves an avenue to develop efficient catalysts for industrial water electrolysis via tuning electronic states.

摘要

理性设计高效的过渡金属基电催化剂对于氧析出反应(OER)至关重要,因为这有利于水分解。然而,工业水电解需要在低过电势下实现大电流密度,而这始终受到固有活性的限制。在此,我们报告了分级双金属氮化物/氢氧化物(NiMoN/NiFe LDH)阵列作为模型催化剂,调节电子态并跟踪结构-活性之间的关系。活化后的 NiMoN/NiFe LDH 在过电势为 266 mV 时表现出工业所需的电流密度为 1000 mA cm,OER 稳定性为 250 h。特别是,原位电化学光谱揭示了异质界面有利于动态结构演化,从而优化了电子结构。运行电化学阻抗谱表明,由于快速电荷传输,OER 动力学和中间产物的演化得到了加速。通过理论和实验研究的结合揭示了 OER 机制,表明活化后的 NiMoN/NiFe LDH 遵循晶格氧氧化机制,动力学得到了加速。这项工作为通过调节电子态开发用于工业水电解的高效催化剂开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a9a/10073178/af6083396034/41467_2023_37091_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验