Liu Shangheng, Geng Shize, Li Ling, Zhang Ying, Ren Guomian, Huang Bolong, Hu Zhiwei, Lee Jyh-Fu, Lai Yu-Hong, Chu Ying-Hao, Xu Yong, Shao Qi, Huang Xiaoqing
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China.
Nat Commun. 2022 Mar 4;13(1):1187. doi: 10.1038/s41467-022-28888-3.
Amorphous materials have attracted increasing attention in diverse fields due to their unique properties, yet their controllable fabrications still remain great challenges. Here, we demonstrate a top-down strategy for the fabrications of amorphous oxides through the amorphization of hydroxides. The versatility of this strategy has been validated by the amorphizations of unitary, binary and ternary hydroxides. Detailed characterizations indicate that the amorphization process is realized by the variation of coordination environment during thermal treatment, where the M-OH octahedral structure in hydroxides evolves to M-O tetrahedral structure in amorphous oxides with the disappearance of the M-M coordination. The optimal amorphous oxide (FeCoSn(OH)-300) exhibits superior oxygen evolution reaction (OER) activity in alkaline media, where the turnover frequency (TOF) value is 39.4 times higher than that of FeCoSn(OH). Moreover, the enhanced OER performance and the amorphization process are investigated with density functional theory (DFT) and molecule dynamics (MD) simulations. The reported top-down fabrication strategy for fabricating amorphous oxides, may further promote fundamental research into and practical applications of amorphous materials for catalysis.
非晶态材料因其独特性能在多个领域受到越来越多的关注,但其可控制备仍然面临巨大挑战。在此,我们展示了一种通过氢氧化物非晶化来制备非晶态氧化物的自上而下策略。这种策略的通用性已通过单一、二元和三元氢氧化物的非晶化得到验证。详细表征表明,非晶化过程是通过热处理过程中配位环境的变化实现的,其中氢氧化物中的M-OH八面体结构演变为非晶态氧化物中的M-O四面体结构,同时M-M配位消失。最佳的非晶态氧化物(FeCoSn(OH)-300)在碱性介质中表现出优异的析氧反应(OER)活性,其转换频率(TOF)值比FeCoSn(OH)高39.4倍。此外,利用密度泛函理论(DFT)和分子动力学(MD)模拟研究了增强的OER性能和非晶化过程。所报道的用于制备非晶态氧化物的自上而下制备策略,可能会进一步推动非晶态材料催化的基础研究和实际应用。