Suppr超能文献

缺氧特征在从个体到全球尺度的耳石δC中留下印记。

Hypoxia traits imprinted in otolith δC from individual to global scales.

作者信息

Howard Evan M, Deutsch Curtis A

机构信息

Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA.

Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA, 98195, USA.

出版信息

Sci Rep. 2025 Jan 2;15(1):279. doi: 10.1038/s41598-024-82518-0.

Abstract

Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC). The model reproduces the major empirical patterns in δC at individual to global scales. The weak dependence on body size and strong, non-linear, dependence on temperature reflect the same balance between metabolism and ventilatory gas exchange that underlies organisms' hypoxia tolerance. The global relationship between temperature and δC records both the fractionation by aragonite precipitation and the variation in hypoxia traits across ocean biomes. Because hypoxia tolerance is imprinted on both otolith geochemistry and species biogeography, the model allows the aerobic limits of species geographic ranges to be predicted from fish δC. This physiologically grounded model provides a foundation for the use of otolith chemistry to reconstruct modern spatial patterns and paleoceanographic changes in key traits that shape aerobic habitat of aquatic species.

摘要

耐缺氧能力及其随温度、活动和体重的变化,是气候影响海洋变温动物的关键生态生理特征。迄今为止,这些特征的实验测定仅限于一小部分现代物种。我们利用动物新陈代谢中碳和氧的紧密耦合,从机制上将这些特征与鱼类耳石中的碳同位素(δC)联系起来。该模型再现了从个体到全球尺度上δC的主要经验模式。对体型的弱依赖性以及对温度的强烈非线性依赖性,反映了新陈代谢与通气气体交换之间相同的平衡,而这种平衡是生物体耐缺氧能力的基础。温度与δC之间的全球关系记录了文石沉淀的分馏作用以及跨海洋生物群落的缺氧特征变化。由于耐缺氧能力同时烙印在耳石地球化学和物种生物地理学上,该模型使得能够根据鱼类δC预测物种地理分布范围的需氧极限。这个基于生理学的模型为利用耳石化学来重建塑造水生物种需氧栖息地的关键特征的现代空间格局和古海洋学变化奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcbd/11696016/6289b84078e1/41598_2024_82518_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验