Suppr超能文献

通过基于位置的社交网络实现个性化智能旅游。

Enabling personalized smart tourism with location-based social networks.

作者信息

Shen Yuqi, Wu Yuhan, Song Jingbo, Kong Xiangjie, Pau Giovanni

机构信息

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.

School of Software, Dalian University of Technology, Dalian, China.

出版信息

PeerJ Comput Sci. 2024 Oct 8;10:e2375. doi: 10.7717/peerj-cs.2375. eCollection 2024.

Abstract

With the rapid advance of mobile internet, communication technology and the Internet of Things (IoT), the tourism industry is undergoing unprecedented transformation. Smart tourism offers users personalized and customized services for travel planning and recommendations. Location-based social networks (LBSNs) play a crucial role in smart tourism industry by providing abundant data sources through their social networking attributes. However, applying LBSNs to smart tourism is a challenge due to the need to deal with complex multi-source information modeling and tourism data sparsity. In this article, to fully harness the potential of LBSNs using deep learning technologies, we propose an knowledge-driven personalized recommendation method for smart tourism. Representation learning techniques can effectively modeling the contextual information (, time, space, and semantics) in LBSNs, while the data augmentation strategy of contrastive learning techniques can explore user personalized travel behaviors and alleviate data sparsity. To demonstrate the effectiveness of the proposed approach, we conducted a case study on trip recommendation. Furthermore, the patterns of human mobility are revealed by exploring the effect of contextual data and tourist potential preferences.

摘要

随着移动互联网、通信技术和物联网(IoT)的迅速发展,旅游业正在经历前所未有的变革。智慧旅游为用户提供个性化和定制化的旅行规划与推荐服务。基于位置的社交网络(LBSNs)通过其社交网络属性提供丰富的数据源,在智慧旅游业中发挥着关键作用。然而,由于需要处理复杂的多源信息建模和旅游数据稀疏性问题,将LBSNs应用于智慧旅游是一项挑战。在本文中,为了利用深度学习技术充分挖掘LBSNs的潜力,我们提出了一种用于智慧旅游的知识驱动型个性化推荐方法。表示学习技术可以有效地对LBSNs中的上下文信息(时间、空间和语义)进行建模,而对比学习技术的数据增强策略可以探索用户的个性化旅行行为并缓解数据稀疏性。为了证明所提方法的有效性,我们进行了一次旅行推荐的案例研究。此外,通过探索上下文数据和游客潜在偏好的影响,揭示了人类移动模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c18b/11623078/549ce4abc7cf/peerj-cs-10-2375-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验