文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Chitooligosaccharides promote diabetic wound healing by mediating fibroblast proliferation and migration.

作者信息

Li Zihan, Zhang Chuwei, Wang Lei, Zhang Qingrong, Dong Yipeng, Sha Xinyu, Wang Bolin, Zhu Zhihan, Wang Wenmiao, Wang Yongjun, Zhou Youlang, Zhang Yi

机构信息

Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.

Medical College, Nantong University, Nantong, People's Republic of China.

出版信息

Sci Rep. 2025 Jan 2;15(1):556. doi: 10.1038/s41598-024-84398-w.


DOI:10.1038/s41598-024-84398-w
PMID:39747336
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11697320/
Abstract

Diabetic wounds are notoriously difficult to heal due to impaired cell repair mechanisms, reduced angiogenesis, and a heightened risk of infection. Fibroblasts play a vital role in wound healing by producing extracellular matrix (ECM) components and various growth factors, but their function is inhibited in diabetic wounds. Chitooligosaccharides (COS), intermediate products of chitosan degradation, have shown efficacy in promoting tissue repair, yet their role in diabetic wound healing remains underexplored. In a mouse model of diabetic wounds, COS treatment demonstrated substantial bioactivity in accelerating wound healing by enhancing fibroblast proliferation and migration. Additionally, COS increased collagen III deposition and angiogenesis at the wound sites. The COS also mitigated inflammatory responses by controlling leukocyte infiltration and bacterial infection. Mechanistically, COS regulated fibroblast activity via the PI3K/Akt signaling pathway, providing a novel bioactive material for chronic wound healing.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/9ec06400c00e/41598_2024_84398_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/c6ce0c11f723/41598_2024_84398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f838c0fefe25/41598_2024_84398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/975623bf4fba/41598_2024_84398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/2adfe4a7fbe8/41598_2024_84398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f30aa0eaf133/41598_2024_84398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/61ec71648b1c/41598_2024_84398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f161d39c36f1/41598_2024_84398_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/75b863fb1784/41598_2024_84398_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f63ca81ba21c/41598_2024_84398_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/9ec06400c00e/41598_2024_84398_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/c6ce0c11f723/41598_2024_84398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f838c0fefe25/41598_2024_84398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/975623bf4fba/41598_2024_84398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/2adfe4a7fbe8/41598_2024_84398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f30aa0eaf133/41598_2024_84398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/61ec71648b1c/41598_2024_84398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f161d39c36f1/41598_2024_84398_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/75b863fb1784/41598_2024_84398_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/f63ca81ba21c/41598_2024_84398_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721f/11697320/9ec06400c00e/41598_2024_84398_Fig10_HTML.jpg

相似文献

[1]
Chitooligosaccharides promote diabetic wound healing by mediating fibroblast proliferation and migration.

Sci Rep. 2025-1-2

[2]
Notoginsenoside Ft1 Promotes Fibroblast Proliferation via PI3K/Akt/mTOR Signaling Pathway and Benefits Wound Healing in Genetically Diabetic Mice.

J Pharmacol Exp Ther. 2016-2

[3]
Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway.

Exp Cell Res. 2018-6-28

[4]
Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway.

Biosci Rep. 2017-11-9

[5]
NGF accelerates cutaneous wound healing by promoting the migration of dermal fibroblasts via the PI3K/Akt-Rac1-JNK and ERK pathways.

Biomed Res Int. 2014

[6]
Endostatin stimulates proliferation and migration of adult rat cardiac fibroblasts through PI3K/Akt pathway.

Eur J Pharmacol. 2015-3-5

[7]
Injective hydrogel loaded with liposomes-encapsulated MY-1 promotes wound healing and increases tensile strength by accelerating fibroblast migration via the PI3K/AKT-Rac1 signaling pathway.

J Nanobiotechnology. 2024-7-5

[8]
Impaired wound healing results from the dysfunction of the Akt/mTOR pathway in diabetic rats.

J Dermatol Sci. 2015-9

[9]
Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis.

J Nanobiotechnology. 2021-5-21

[10]
The Antimicrobial Peptide Human β-Defensin-3 Accelerates Wound Healing by Promoting Angiogenesis, Cell Migration, and Proliferation Through the FGFR/JAK2/STAT3 Signaling Pathway.

Front Immunol. 2021

引用本文的文献

[1]
Multispectral Pulsed Photobiomodulation Enhances Diabetic Wound Healing via Focal Adhesion-Mediated Cell Migration and Extracellular Matrix Remodeling.

Int J Mol Sci. 2025-6-27

[2]
Cell migration in diabetic wound healing: Molecular mechanisms and therapeutic strategies (Review).

Int J Mol Med. 2025-8

本文引用的文献

[1]
DNA-Based Hydrogels with Multidrug Sequential Release for Promoting Diabetic Wound Regeneration.

JACS Au. 2023-8-29

[2]
Recent developments in nanoparticles for the treatment of diabetes.

J Drug Target. 2023-12

[3]
Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds.

Environ Res. 2023-12-1

[4]
Direct cellular reprogramming and transdifferentiation of fibroblasts on wound healing-Fantasy or reality?

Chronic Dis Transl Med. 2023-6-15

[5]
Dual gene-activated dermal scaffolds regulate angiogenesis and wound healing by mediating the coexpression of VEGF and angiopoietin-1.

Bioeng Transl Med. 2023-6-25

[6]
Chitooligosaccharide from Pacific White Shrimp Shell Chitosan Ameliorates Inflammation and Oxidative Stress via NF-κB, Erk1/2, Akt and Nrf2/HO-1 Pathways in LPS-Induced RAW264.7 Macrophage Cells.

Foods. 2023-7-19

[7]
Effect of eIF2α in Neuronal Injury Induced by High Glucose and the Protective Mechanism of Resveratrol.

Mol Neurobiol. 2023-10

[8]
Chitooligosaccharide boosts the immunity of immunosuppressed blunt snout bream against bacterial infections.

Int J Biol Macromol. 2023-7-1

[9]
Arctigenin improves neuropathy via ameliorating apoptosis and modulating autophagy in streptozotocin-induced diabetic mice.

CNS Neurosci Ther. 2023-10

[10]
Design, optimization and characterization of a novel antibacterial chitosan-based hydrogel dressing for promoting blood coagulation and full-thickness wound healing: A biochemical and biophysical study.

Int J Biol Macromol. 2023-6-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索