Suppr超能文献

听起来像赌博:使用变压器从赌徒环境中的声音检测赌场访问情况。

Sounds like gambling: detection of gambling venue visitation from sounds in gamblers' environments using a transformer.

作者信息

Yokotani Kenji, Yamamoto Tetsuya, Takahashi Hideyuki, Takamura Masahiro, Abe Nobuhito

机构信息

Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 1-1, Minamijosanjimacho, Tokushima, Tokushima, 770-0814, Japan.

Department of Data Science, PsychoBit, Inc., Kobe, Japan.

出版信息

Sci Rep. 2025 Jan 2;15(1):340. doi: 10.1038/s41598-024-83389-1.

Abstract

Objective digital measurement of gamblers visiting gambling venues is conducted using cashless cards and facial recognition systems, but these methods are confined within a single gambling venue. Hence, we propose an objective digital measurement method using a transformer, a state-of-the-art machine learning approach, to detect total gambling venue visitations for gamblers who visit multiple gambling venues using sounds in gamblers' environments. We sampled gambling and nongambling event datasets from websites to create a gambling play classifier. We also sampled gambling and nongambling location datasets for a gambling location detector. Further, we sampled practical dataset with four different recording conditions and two different recording devices. Our Swin transformer model with 54 classes (4 gambling play classes and 50 nongambling event classes) achieved highest accuracy (0.801). The gambling location detector of the Swin transformer also achieved high performance; the areas under the receiver operating characteristic curves (AUCs) for bingo, mahjong, pachinko, and electronic gambling machine plays were 0.845, 0.780, 0.826, and 0.833, respectively. Moreover, gambling visitation detector of the Swin transformer showed high performance especially in Pachinko (AUCs 0.972-0.715) regardless of their recording conditions and devices. These preliminary findings highlight the potential of environmental sounds to detect visits to gambling venues.

摘要

使用无现金卡和面部识别系统对光顾赌博场所的赌徒进行客观数字测量,但这些方法仅限于单个赌博场所。因此,我们提出一种使用变压器(一种先进的机器学习方法)的客观数字测量方法,以检测使用赌徒环境中的声音光顾多个赌博场所的赌徒的总赌博场所访问情况。我们从网站上采样赌博和非赌博事件数据集以创建赌博游戏分类器。我们还为赌博地点检测器采样了赌博和非赌博位置数据集。此外,我们采样了具有四种不同记录条件和两种不同记录设备的实际数据集。我们具有54个类别(4个赌博游戏类别和50个非赌博事件类别)的Swin变压器模型达到了最高准确率(0.801)。Swin变压器的赌博地点检测器也实现了高性能;宾果游戏、麻将、弹珠机和电子赌博机游戏的接收器操作特征曲线(AUC)下面积分别为0.845、0.780、0.826和0.833。此外,Swin变压器的赌博访问检测器表现出高性能,尤其是在弹珠机方面(AUC为0.972 - 0.715),无论其记录条件和设备如何。这些初步发现突出了环境声音在检测对赌博场所访问方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b800/11696015/c94618ee5d28/41598_2024_83389_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验