Suppr超能文献

具有压电贴片的悬臂厚板的自适应容错控制

Adaptive fault tolerant control for cantilever thick plates with piezoelectric patches.

作者信息

Nadi Azin, Mahzoon Mojtaba, Azadi Yazdi Ehsan

机构信息

School of Mechanical Engineering, Shiraz University, Shiraz, Fars, 7193616548, Iran.

出版信息

Sci Rep. 2025 Jan 2;15(1):388. doi: 10.1038/s41598-024-84420-1.

Abstract

This paper presents a novel adaptive fault-tolerant control (AFTC) framework for systems with piezoelectric sensor patches, specifically targeting sensor faults and external disturbances. The proposed method ensures robust control of cantilever thick plates by integrating adaptive estimation to simultaneously handle sensor faults and system uncertainties, maintaining stability despite issues like drift, bias, loss of accuracy, and effectiveness. Unlike traditional approaches that address sensor faults individually, our method provides a comprehensive solution backed by Lyapunov-based stability analysis, demonstrating uniform ultimate boundedness under various fault conditions. Extensive simulations validate the controller's superior fault compensation and disturbance rejection compared to Backstepping Sliding Mode Control (BSMC). Under fault-free conditions, the baseline controller achieves accurate tracking, while the AFTC shows significant improvement in trajectory tracking and adaptation when faults are introduced, with minimal performance degradation. This work extends fault-tolerant control strategies to complex systems, including those involving piezoelectric elements, providing a foundation for future research in this area, which has been largely unexplored.

摘要

本文提出了一种针对带有压电传感器贴片系统的新型自适应容错控制(AFTC)框架,特别针对传感器故障和外部干扰。所提出的方法通过集成自适应估计来确保对悬臂厚板的鲁棒控制,以同时处理传感器故障和系统不确定性,尽管存在诸如漂移、偏差、精度损失和有效性问题等仍能保持稳定性。与传统方法分别处理传感器故障不同,我们的方法提供了一种基于李雅普诺夫稳定性分析的全面解决方案,证明了在各种故障条件下的一致最终有界性。大量仿真验证了与反步滑模控制(BSMC)相比,该控制器具有卓越的故障补偿和干扰抑制能力。在无故障条件下,基线控制器实现了精确跟踪,而当引入故障时,AFTC在轨迹跟踪和适应性方面表现出显著改进,性能下降最小。这项工作将容错控制策略扩展到包括涉及压电元件的复杂系统,为该领域未来的研究提供了基础,而该领域在很大程度上尚未得到探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ac1/11697075/836157323db6/41598_2024_84420_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验