Kou Bencong, Wen Tingxin
Ordos Institute of Liaoning Technical University, Liaoning Technical University, Ordos, 017000, China.
School of Business Administration, Liaoning Technical University, Huludao City, China.
Sci Rep. 2025 Jan 2;15(1):140. doi: 10.1038/s41598-024-83710-y.
This study focuses on the construction and interpretation of a mine water inrush source identification model to enhance the precision and credibility of the model. For water inrush source identification and feature analysis, a novel method combining XGBoost and SHAP is suggested. The model uses Ca, Mg, K + Na, HCO, Cl, SO, Hardness, and pH as discriminators, and the key parameters in the XGBoost model are optimized by introducing the improved sparrow search algorithm. The Sparrow Search Algorithm combines Tent chaos mapping and Levy flight strategy (CLSSA), which makes the optimization process better balance the global search ability and local search ability, so as to improve the efficiency and effect of parameter optimization. Specifically, CLSSA is used to optimize key parameters of XGBoost, including the number of weak estimators (NE), tree depth (TD), model learning rate (LR), and then establishes a mine water inrush source identification model based on the CLSSA-XGBoost. Moreover, the model combines SHAP explainable framework to analyze key features of the identification results and interpret the impact of these features. Verified by 160 sample sets in Xinzhuangzi Mine, the average prediction precision of the CLSSA-XGBoost is 97.78%, the average prediction recall rate is 97.59% and the F1 is 97.61%, which are better than other comparison models. The SHAP provides global and local predictive explanatory analysis, revealing key factors for identifying different water inrush sources, enhancing the credibility of prediction results, and helping mine safety personnel make accurate decisions.
本研究聚焦于矿井突水水源识别模型的构建与解释,以提高模型的精度和可信度。针对突水水源识别与特征分析,提出了一种结合XGBoost和SHAP的新方法。该模型以Ca、Mg、K + Na、HCO、Cl、SO、硬度和pH作为判别指标,并通过引入改进的麻雀搜索算法对XGBoost模型中的关键参数进行优化。麻雀搜索算法结合了帐篷混沌映射和莱维飞行策略(CLSSA),使优化过程更好地平衡了全局搜索能力和局部搜索能力,从而提高了参数优化的效率和效果。具体而言,利用CLSSA对XGBoost的关键参数进行优化,包括弱学习器数量(NE)、树深度(TD)、模型学习率(LR),进而建立基于CLSSA-XGBoost的矿井突水水源识别模型。此外,该模型结合SHAP可解释框架分析识别结果的关键特征,并解释这些特征的影响。经新庄子矿160个样本集验证,CLSSA-XGBoost的平均预测精度为97.78%,平均预测召回率为97.59%,F1值为97.61%,均优于其他对比模型。SHAP提供了全局和局部的预测性解释分析,揭示了识别不同突水水源的关键因素,提高了预测结果的可信度,有助于矿井安全人员做出准确决策。